dnf关羽和赵云哪个好玩:黑洞是个什么概念?

来源:百度文库 编辑:高考问答 时间:2024/04/24 00:47:34

在用量子力学考虑大爆炸奇点之前,我们先看看另一个在广义相对论框架下的奇点——黑洞。

我们都知道逃逸速度。星体所产生的引力场(和星体的质量及密度有关)越大,从其表面逃逸所需的极限速度
就越大。如果这个引力场大到某个极限,使以光速运动的物体也不能挣脱它的束缚而逃逸,那么我们将无法观察到
这个星体,仅能感受到它的引力效应……这就是在200 年前对黑洞的最初定义。

实际上,对于光不能象对待普通物体那样考虑,因为普通物体在上抛的过程中速度逐渐变慢,并最终落回地面,
而光是以不变的速率前进的。因此必须以广义相对论的观点重新解释黑洞现象,也就是:

光由于强大的引力场造成的空间——时间扭曲,而被强烈地折弯并回到星体表面,不能从其表面逃逸。

黑洞是一个空间——时间区域,它的最外围是光所能从黑洞向外到达的最远距离,这个边界称为“事件视界”。

它如同一个单向的膜,只允许物质穿过视界并落到黑洞里去,但没有任何物质能够从里面出来!

那么黑洞是如何形成的呢?让我们先从恒星的生命周期说起。宇宙早期的星云物质——绝大部分是氢的极其稀
薄的气体——由于自身的引力作用而收缩成恒星。由于收缩过程中气体原子相互碰撞的频率和速度越来越高,导致
气体温度上升并最终使恒星发光。当温度如此之高,以致于氢原子碰撞后不再离开而是聚合成氦,这被称为“热核
聚变”。聚变释放出的巨大能量使恒星气体的压力进一步升高,并达到足以平衡恒星内部引力的程度,于是恒星的
收缩停止下来,并在相当长的时间里稳定地燃烧。当恒星耗尽了这些氢之后,由于核反应的减弱而开始变冷,恒星
气体的压力不足以抵抗自身引力的而导致恒星重新开始收缩。恒星中的氦元素发生聚变形成碳或氧之类较重的元素。

但这一过程并没有释放太多的能量,恒星继续收缩。

诺贝尔奖得主,印度裔美籍科学家强德拉塞卡在1928年指出,由于“泡利不相容原理”(在同一轨道不存在两
个运动状态完全相同的粒子)的作用,当恒星进一步缩小时,物质粒子靠得非常近并且必须严格地遵守不相容原理,
因而粒子之间发散的趋势平衡了恒星自身的引力,使恒星不再缩小。如果这个不相容原理引起的排斥力是电子间产
生的,那么恒星将坍缩成为一颗半径为几千英里,密度为每立方英寸几百吨的冷恒星——“白矮星”。科学家们已
经观测到大量的白矮星。坍缩的另一种形式为“中子星”——它上面的的电子早已被引力拉到质子上,因此这种恒
星全部由中子组成,并靠中子间不相容原理引起的排斥力抗衡自身引力以维持“体形”。它们的半径只有10英里左
右,密度为每立方英寸几亿吨。中子星同样已经为观测所证实。

强德拉塞卡同时计算出,当恒星质量大于太阳质量的一倍半时,即使不相容原理也无法阻挡恒星的继续坍缩,
恒星将无休止的收缩,直至体积为零!此时的物质密度和空间——时间曲率将无穷大。所有的科学定律将在此失效。

这就是我们前面所提到的“黑洞奇点”。

事实上存在着这样一种情形:超过强德拉塞卡极限的恒星在耗尽自己的燃料时,它们可能会在被称为“超新星
爆发”的巨大爆炸中抛出大量的物质,使自己降到极限质量之下从而避免坍缩。但这不可能总是发生,即使总是发
生,那么如果将额外的物质加在白矮星或中子星上,结果又将这样呢?

科学家们感到震惊,他们无法相信这一理论并对它怀有敌意。他们纷纷撰文试图证明恒星的体积不会收缩到零,
这其中也包括爱因斯坦。

但是,史蒂芬。霍金和罗杰。彭罗斯于1965和1970年的研究指出,如果广义相对论是正确的话,那么在黑洞中
必然存在着无限大密度和空间——时间曲率的奇点。这个奇点和大爆炸类似,是一切事件的终结之处,科学定律可
预见性都将失效。

我们用广义相对论来描述和理解一下黑洞。当恒星坍缩时,恒星发出的光波被强烈的红移。当恒星收缩到它的
临界半径时,它发出的引力场是如此之强,使得光波被散开到无限长的时间间隔内。在黑洞外的观察者则会看到,
恒星发出的光越来越红,越来越淡,最终再也看不到这颗恒星了。这是一个名副其实的黑的“洞”!

质量最大的恒星遗留物会成为黑洞。即使是光也无法从黑洞中逃逸出来。
黑洞周围的气体受到非常强烈的吸引,于是会绕着黑洞越转越快。旋转产生的摩擦使气体变热。天文学家可以探测从热气体中发射出来的X射线,以此来推断黑洞是否存在。同样的,天文学家可以根据黑洞对这颗星的吸引力来计算黑洞的质量。

黑洞是个特定的物理概念
物理学上说的黑洞,是个特定的概念。最早提出这个概念是在18世纪末叶。1795年,著名的法国数学家和天文学家拉普拉斯在一部专著中,根据牛顿万有引力定律提出,如果有一颗星球,密度与地球相同,但是直径比太阳大250倍,那么在这颗星球的表面,引力将大得使它所发出的光也不能离开它,因而从外面根本看不到它。在此之前12年,英国地质学家米歇尔也曾提出过类似的想法。
120年后,爱因斯坦证明,在一个天体的引力场中,如果引力强大到能够把光都囚禁住,那么牛顿万有引力定律将不再适用,应该代之以一种新的理论,即广义相对论。另外,他还在狭义相对论中提出,任何物体的运动速度都不可能超过光速,因此,如果一个天体的引力强大到连光也不能离开它,那么,在任何情况下,任何物体也都不可能逃离这个天体。
1爱因斯坦的引力理论在1915年以一个高等数学方程的形式给出。在爱因斯坦引力场方程发表的同一年,德国天文学家史瓦西把天体的形状取为最简单的球形,于12月获得了这个方程的解。
爱因斯坦的广义相对论认为,引力是时空弯曲造成的。按照史瓦西的解,如果把一个天体的质量全部压缩到某一半径范围里,它周围的空间就会极度弯曲,使得引力强大到如拉普拉斯所说,任何物质和辐射都逃不出来。后来的人们把这一半径称为史瓦西半径。对于太阳质量,计算得到的史瓦西半径等于2.95千米;而对于地球质量,则为8.9毫米。
按照史瓦西的解,在史瓦西半径范围内,空间和时间都丧失了原有的特征,所有用于测量距离和时间的规则都失效了,时间趋于无限,而距离变为0。英国天文学家艾丁顿就此说:"这种奇异的时空世界是我们无法在其中进行任何测量的怪物。"1967年,美国天体物理学家惠勒首先把这种怪物称为"黑洞"。
自然界中的黑洞
1939 年,美国物理学家奥本海默等人运用广义相对论方程,计算一颗质量很大的恒星在它内部的热核反应停止以后将发生的事情。他们发现,在这种情况下,这颗恒星内部的物质会像自由落体一样向中心坍落,只要这颗恒星的质量足够大,它们将一直坍落到史瓦西半径之内,成为一个黑洞。在银河系历史上,这样的大质量恒星先后出现过不少,其中一部分应该已经变成黑洞。这样的黑洞称为"恒星质量黑洞",天文学家已经获得许多这类黑洞的间接观测证据。
除了上述恒星质量黑洞以外,天文学家在20世纪60年代初发现了一种天体,它们在望远镜里看起来只是一个亮点,与恒星没有什么两样,可是离开我们的距离达几十亿光年甚至更远。据此计算它们发射的能量,有的可以超过100个大星系的总和。它们所发射的能量,大部分来自于一个直径小于1光年的区域。这种天体被称为类星体,天文学家尚不能直接观测到类星体的中心究竟是什么,但按照理论模型,类星体很可能是正在形成中的星系的核心,它的中心处应该是一个超大质量黑洞。
现在,天文学家认为,每一个星系都是在一个超大质量黑洞的周围建立起来的。天文学家已经取得了比过去任何时候更强有力的证据,他们根据一个星系内恒星绕星系中心旋转的速度,可以推断出这个星系中心天体的质量。对于包括银河系在内的一些星系,已经测量出在它们中心只有太阳和地球间距离几倍大的空间中,集中了几百万、上千万倍太阳的质量,从而表明了在这一空间中物质的密度极高,只可能是一个黑洞。这种超大质量黑洞不是单颗恒星内部的物质坍落形成的,而是星系形成过程的产物。
黑洞与周围物质的相互作用
黑洞本身不发光,但是它的强大引力场会与周围的物质相互发生作用,使得这些物质以极快的速度向黑洞坠落,获得能量从而温度升得极高,并且压缩到很高的密度。这些高温、高密度的物质,会发射出强大的紫外光和X射线。
黑洞周围的物质向黑洞坠落时,不是循直线下落,而是漩涡式下落。其结果,这些物质在黑洞周围形成一个薄圆盘,称为吸积盘。吸积盘内侧物质的运动速度可接近光速,部分物质不会落入黑洞,会沿着与吸积盘的盘面垂直的轴线方向逃逸出去,形成喷流。这种速度接近光速的喷流可以喷射到几百以至几千光年远,天文学家已经在许多类星体和星系的核心附近观测到这种喷流产生的痕迹。
吸积盘中的物质,当然有很大一部分,最终落进了黑洞,黑洞因此会慢慢长大。黑洞吞噬周围物质的能力与黑洞本身的大小有关。黑洞质量越大,它的引力场就越强大,一方面在同样时间内能吞噬更多的物质,同时也能够吞噬更远距离的物质。
物质一旦掉进黑洞里面,就再也不可能逃逸出来了。然而,1975年,英国物理学家霍金经过计算发现,黑洞会缓慢地蒸发。黑洞的这种蒸发现象称为霍金辐射。霍金辐射会带走黑洞的能量。按照爱因斯坦的理论,能量和质量是等价的,它们可以互相转化。随着时间流逝,黑洞的质量越来越多地转化成能量蒸发掉,最终黑洞将会消失。
黑洞蒸发的速度也与黑洞的质量有关,质量越小的黑洞,蒸发越快。很明显,如果黑洞很小,吞噬周围物质的能力很弱,而且在足够近的距离内没有足够多的物质供它吞噬从而让它足够迅速地长大,那么它很快就会消失。
在实验室里制造黑洞
据英国《卫报》今年3月18日报道,美国布朗大学物理教授霍拉蒂·纳斯塔西通过实验在地球上制造出了一个人造黑洞。其实,这一报道有些不太准确。据查,纳斯塔西教授制造的并不是真正的黑洞,用他自己的话说,仅仅是"黑洞的相似物"。
那么,我们能不能在实验室里制造黑洞呢?
不论在实验室里,还是在理论上,目前还找不到一种方法,能够使物质的密度变得像黑洞那样高。可是,根据爱因斯坦能量等价于物质的理论,当大量的能量集中于一点时,也应该会出现黑洞。科学家要在实验室里制造黑洞,只能循着这一途径。
目前正在日内瓦欧洲原子核研究中心建造的大型强子对撞机,将在2007年开始运行。这将是世界上最强大的粒子加速器,它能以14万亿电子伏的撞击能量把质子打碎。这么强大的能量是不是已经足以生成一个哪怕非常微小的黑洞了呢?
很遗憾,按照我们原有的关于粒子以及粒子相互作用的知识,以这种方式制造一个黑洞的最小能量,是上述大型强子对撞机所能产生的能量的1亿亿倍。建造一个能够达到这么高能量的粒子加速器的可能性实际上永远为零。
可是在过去几年中,在实验室中制造黑洞的前景已经有所改观。这得归功于如像"弦论"这样的新的引力理论。新的理论认为引力实际上远比我们所想的强大。对于日常生活来说,只有在质量非常大的情况下,引力才变得不可忽视。引力为什么这样微弱?这让物理学家感到困惑。有些物理学家认为,这是因为我们所处的空间除了我们日常生活的三个维度之外,还存在不可见的额外维度,引力泄漏进了这些额外的维度。我们的宇宙和加速器中的粒子处在三维空间中,就像是处在一个肥皂泡表面的尘埃微粒。
如果这种想法是正确的,那么当把引力应用于非常小的距离,以致引力根本没有可能向其他维度泄漏时,它应该远为强大。如果能把足够多的能量挤压在一千亿分之一纳米的空间中,就足以能产生一个黑洞。这种微型的黑洞,会由于霍金辐射而在十亿亿分之一纳秒内蒸发。
如果上述这些理论上的想法是正确的,那么大型强子对撞机所产生的强大能量也许已经足以每秒钟生成若干个微型黑洞。这种微型黑洞质量不会超过几微克,比尘埃微粒还轻。
剩下的问题是如何检测这种微型黑洞。西班牙一个研究小组的计算表明,这种微型黑洞产生的霍金辐射大部分应该呈现为粒子,能够检测得到。如果他们的计算是正确的,那么大型强子对撞机就能够第一次用实验证明黑洞的存在和来自黑洞的霍金辐射。
当然,这还仅仅是一种理论上的可能性,是否真的能实现,有赖于所依据的理论即弦论的正确性。弦论本身还是一种有争议的理论,如果人造黑洞真能制造成功,对于弦论来说也将是一种实验证明。
这样的黑洞,质量那样微小,大小只有一千亿分之一纳米,寿命只有十亿亿分之一纳秒,当然根本不可能把地球吞噬掉。因此,一些媒体在纳斯塔西教授制造出黑洞的类似物之后渲染的人造黑洞毁灭地球的可能性,不过是又一个杞人忧天的例子。

恒星最后形状

一楼说的没错,在这里,我再做点补充.
首先,黑洞的由来:它的巨大引力场足以吸进不超过光速的一切物体与粒子,使他们无法逃逸,所以光线也无法逃逸,也就是看不到,看起来全是黑乎乎的.
再者,这黑洞运动的速度是越来越大,以光子的形式向外界释放的能量幅度也是越来越大.实际上,任何粒子或物体都要不断得向外界释放光子(伴随着能量),一些感应器就是利用这个原理制成的,这在高三物理课本上有介绍.
最后,就是黑洞爆炸学说.