dnf奶妈输出装备选择:当某导体发生超导现象时,通过这一导体的电流和电压是否仍然符合欧姆定律?

来源:百度文库 编辑:高考问答 时间:2024/04/20 08:40:17
最好有详细的解释,或者答案所在网址!
欧姆定律是I=U/R,当超导现象发生时,R=0,此时U/R是没有意义的。即使导体内有电流通过,为Ix,那么U=Ix*R=0,即不用施与电压就会使导体内有电流通过,这就与电压是电流形成的条件之一矛盾。所以我就想不通了。
所以各位高手一定要鼎力相助啊!

回答最好详细一些,并说明此时电流和电压存在怎样的关系!多谢。

******************************************************************************************************************

理论上是符合的
因为所谓超导体,就是物体温度降到一定水平后,电阻变的极小,但仍有电阻,所以符合

而在理想状态下,超导体是没有电阻的,所以在电线上没有能量损失

具体怎么应用,就要看题中到底是说的是不是理想状态下

你所谓的R=0时,0作分母无意义的情况在现实中是不存在的,因为超导体不会直接接在电源两边(电源会立即烧坏,另外将电源短路也是一件无意义的事情),超导的应用是一定会有接负载(既用电器)的,所以不会存在R=0的情况

电压值是相对的。

存在电势差就有电压差,

当导体出现超导现象时,

不存在电压差,所以电压是零。

欧姆定律的因素是电流、电压、电阻。

当电阻为零,电压当然为零。

I=U/R 并不错误我认为。

因此严谨的说,在正常情况下,I=U/R

你看看这个可以吗?

超导电性
superconductivity

某些物质在一定温度条件下电阻降为零的性质。1911年荷兰物理学家H.卡末林-昂内斯发现汞在温度降至4.2K附近时突然进入一种新状态,其电阻小到实际上测不出来,他把汞的这一新状态称为超导态。以后又发现许多其他金属也具有超导电性。低于某一温度出现超导电性的物质称为超导体。
主要性质 超导体的主要性质表现为:
①超导体进入超导态时,其电阻率实际上等于零。从电阻不为零的正常态转变为超导态的温度称为超导转变温度或超导临界温度,用Tc 表示。
②外磁场可破坏超导态。只有当外加磁场小于某一量值Hc时才能维持超导电性,否则超导态将转变为正常态,Hc 称为临界磁场强度。Hc 与温度的关系为Hc≈H0〔1-(T/Tc)2〕,H0 是T=0K时的临界磁场强度。
③超导体内的电流强度超过某一量值Ic 时,超导体转变为正常导体,Ic称为临界电流。
④不论开始时有无外磁场,只有T<Tc,超导体变为超导态后,体内的磁感应强度恒为零,即超导体能把磁力线全部排斥到体外,具有完全的抗磁性。此现象首先由W.迈斯纳和R.奥克森菲尔德两人于1933年发现,称为迈斯纳效应。一个小的永久磁体降落到超导体表面附近时,由于永久磁体的磁力线不能进入超导体,在永久磁体与超导体间产生排斥力,使永久磁体悬浮于超导体上。
第一类和第二类超导体 超导体分第一类(又称Pippard超导体或软超导体)和第二类(又称London 超导体或硬超导体)两种。在已发现的超导元素中只有钒、铌和锝属第二类超导体,其他元素均为第一类超导体,但大多数超导合金则属于第二类超导体。第一类超导体只存在一个临界磁场Hc,当外磁场H<Hc时,呈现完全抗磁性,体内磁感应强度为零。第二类超导体具有两个临界磁场,分别用HC1(下临界磁场)和HC2(上临界磁场)表示。当外磁场H<HC1时,具有完全抗磁性,体内磁感应强度处处为零。外磁场满足HC1<H<HC2时,超导态和正常态同时并存,磁力线通过体内正常态区域,称为混合态或涡旋态。外磁场H增加时,超导态区域缩小,正常态区域扩大,H≥HC2时,超导体全部变为正常态。
理论研究 对超导体的宏观理论研究开始于W.H.开塞姆、A.J.拉特杰尔和C.J.戈特等人的工作,他们运用热力学理论分析讨论了超导态和正常态之间的相变问题,得出超导态的熵总是低于正常态的熵这一重要结论,这意味着超导态是比正常态更为有序的状态。
二流体模型 戈特和H.B.G.卡西米尔根据以上结果于1934年提出了超导态的二流体模型,认为超导态比正常态更为有序是由共有化电子(见能带理论)发生某种有序变化所引起,并假定:①超导体处于超导态时,共有化电子可分成正常电子和超导电子两种,分别构成正常流体和超导电子流体,它们占有同一体积,彼此独立地运动,两种流体的电子数密度均随温度而变。②正常流体的性质与普通金属中的自由电子气相同,熵不等于零,处于激发态。正常电子因受晶格振动的散射而会产生电阻。超导电子流体由于其有序性而对熵的贡献为零,处于能量最低的基态。超导电子不会受晶格散射,不产生电阻。③超导态的有序度可用有序参量ω(T)=Ns(T)/N表示,N为总电子数,Ns为超导电子数。T>TC时,无超导电子,ω=0;Τ<Tc时开始出现超导电子,随着温度T的减小,更多的正常电子转变为超导电子;T=0K时,所有电子均成为超导电子,ω=1。根据上述二流体模型可解释许多与超导电性有关的实验现象。
超导体的宏观电磁理论 1935年,F.伦敦和H.伦敦两兄弟在二流体模型的基础上运用麦克斯韦电磁理论提出了超导体的宏观电磁理论,成功地解释了超导体的零电阻现象和迈斯纳效应。根据伦敦的理论,磁场可穿入超导体的表面层内,磁感应强度随着深入体内的深度X指数地衰减:B(x)∝e-x/λ,衰减常数λ称为穿透深度。当超导体的线度小于穿透深度时,体内的磁感应强度并不等于零,故只有当超导体的线度比穿透深度大得多时,才能把超导体看成具有完全的抗磁性。实际测量证实了存在穿透深度这一理论预言,但理论数值与实验不符。1953年A.B.皮帕德对伦敦的理论进行了修正。伦敦的理论未考虑到超导电子间的关联作用,皮帕德认为超导电子在一定空间范围内是相互关联的,并引进相干长度的概念来描述超导电子相互关联的距离(即超导电子波函数的空间范围)。皮帕德得到了与实验相符的穿透深度。
京茨堡-朗道理论 1950年,V.L.京茨堡和L.D.朗道在二级相变理论的基础上提出了超导电性的唯象理论,称为京茨堡-朗道理论(简称GL理论)。超导态与正常态间的相互转变是二级相变(相变时无体积变化,也无相变潜热)。1937年朗道曾提出二级相变理论,认为两个相的不同全在于秩序度的不同,并引进序参量η来描述不同秩序度的两个相,η=0时为完全无序,η=1时为完全有序。GL理论把二级相变理论应用于正常态与超导态的相变过程,其独到之处是引进一个有效波函数ψ作为复数序参量,|ψ|2 则代表超导电子的数密度,应用热力学理论建立了关于ψ的京茨堡-朗道方程。根据GL理论可得到许多与实验相符的结论,例如临界磁场、相干长度及穿透深度与温度的关系等。GL理论还给出了区分第一类超导体和第二类超导体的判据。A.A.阿布里考索夫根据GL理论详细讨论了第二类超导体的基本特性。L.P.戈科夫从超导体的微观理论导出了GL方程。今把GL理论与后来阿布里考索夫和戈科夫的工作合起来称为GLAG理论。
BCS理论 J.巴丁、L.-N.库珀和J.R.施里弗三人于1957年建立了关于超导态的微观理论,简称BCS理论,以费米液体为基础,在电子?声子作用很弱的前提下建立起来的理论。它认为超导电性的起因是费米面附近的电子之间存在着通过交换声子而发生的吸引作用,由于这种吸引作用,费米面附近的电子两两结合成对,叫库珀对。BCS理论可以导出与伦敦方程、皮帕德方程以及京茨堡-朗道方程相类似的方程,能解释大量的超导现象和实验事实。对于某些超导体,例如汞和铅,有一些现象不能用它解释,在BCS理论的基础上发展起来的超导强耦合理论可以解释。
应用 超导电性具有重要的应用价值,如利用在临界温度附近电阻率随温度快速变化的规律可制成灵敏的超导温度计;利用超导态的无阻效应可传输强大的电流,以制造超导磁体、超导加速器、超导电机等;利用超导体的磁悬浮效应可制造无摩擦轴承、悬浮列车等;利用约瑟夫森效应制造的各种超导器件已广泛用于基本常数、电压和磁场的测定、微波和红外线的探测,及电子学领域。高临界温度超导材料的出现必将大大扩展超导电性的应用前景。

1911年荷兰科学家翁纳斯(Onnes)在测量低温下水银电阻率的时候发现, 当温度降到零下269度附近, 水银的电阻竟然消失了!图1复制了当时的实验曲线。电阻的消失叫做零电阻性。所谓“电阻消失”,只是说电阻小于仪表的最小可测电阻。也许有人会产生疑问:如果仪表的灵敏度进一步提高,会不会测出电阻呢?用“持久电流”实验可以解决这个问题。
由正常导体组成的回路是有电阻的,而电阻意味着电能的损耗,即电能转化为热。这样, 如果没有电源不断地向回路补充能量,回路中的电能在极短时间( 例如微秒)里全部消耗完,电流衰减到零。如果回路没有电阻,自然就没有电能的损耗。一旦在回路中激励起电流,不需要任何电源向回路补充能量,

电流可以持续地存在下去。有人曾在超导材料做成的环中把电流维持两年半之久而豪无衰减。由此可以电阻率的上限为10-23欧姆厘米,还不到最纯的铜的剩余电阻率的百万亿分之一。零电阻效应是超导态的两个基本性质之一。
超导态的另一个基本性质是抗磁性,又称迈斯纳(Meissner) 效应。即在磁场中一个超导体只要处于超导态,则它内部产生的磁化强度与外磁场完全抵消,从而内部的磁感应强度为零。也就是说,磁力线完全被排斥在超导体外面

利用超导体的抗磁性可以实现磁悬浮。把一块磁铁放在超导盘上,由于超导盘把磁感应线排斥出去, 超导盘跟磁铁之间有排斥力,结果磁铁悬浮在超导盘的上方。这种超导悬浮在工程技术中是可以大大利用的, 超导悬浮列车就是一例。让列车悬浮起来,与轨道脱离接触,这样列车在运行时的阻力降低很多,沿轨道“飞行”的速度可达500公里/小时。高温超导体发现以后,超导态可以在液氮温区(零下169度以上)出现,超导悬浮的装置更为简单, 成本也大为降低。我国的西南交通大学于1994年成功地研制了高温超导悬浮实验车。

这不能根据算术方法验证.欧姆定律是物理学定理的表达,不能用数学方法来验证,这是关系,不是计算式

你那样说是短路,用超导体来短路

理论上,你那种情况短路的超导体(可以看作是环行的)电流不会损失,所以电流形成的磁场也就是稳定且不用补充能量也不会减弱,这正是超导体最有用途的地方