绿萝需要施肥吗:Cache的的工作原理是什么?

来源:百度文库 编辑:高考问答 时间:2024/04/29 05:46:52

http://zhidao.baidu.com/q?word=Cache%B5%C4%B5%C4%B9%A4%D7%F7%D4%AD%C0%ED&ct=17&pn=0&tn=ikaslist&rn=10
高速缓冲存储器Cache是位于CPU与内存之间的临时存储器,它的容量比内存小但交换速度快。在Cache中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从Cache中调用,从而加快读取速度。由此可见,在CPU中加入Cache是一种高效的解决方案,这样整个内存储器(Cache+内存)就变成了既有Cache的高速度,又有内存的大容量的存储系统了。Cache对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与Cache间的带宽引起的。

高速缓存的工作原理

1. 读取顺序

CPU要读取一个数据时,首先从Cache中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入Cache中,可以使得以后对整块数据的读取都从Cache中进行,不必再调用内存。

正是这样的读取机制使CPU读取Cache的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在Cache中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先Cache后内存。

2. 缓存分类

前面是把Cache作为一个整体来考虑的,现在要分类分析了。Intel从Pentium开始将Cache分开,通常分为一级高速缓存L1和二级高速缓存L2。

在以往的观念中,L1 Cache是集成在CPU中的,被称为片内Cache。在L1中还分数据Cache(I-Cache)和指令Cache(D-Cache)。它们分别用来存放数据和执行这些数据的指令,而且两个Cache可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。

在P4处理器中使用了一种先进的一级指令Cache——动态跟踪缓存。它直接和执行单元及动态跟踪引擎相连,通过动态跟踪引擎可以很快地找到所执行的指令,并且将指令的顺序存储在追踪缓存里,这样就减少了主执行循环的解码周期,提高了处理器的运算效率。

以前的L2 Cache没集成在CPU中,而在主板上或与CPU集成在同一块电路板上,因此也被称为片外Cache。但从PⅢ开始,由于工艺的提高L2 Cache被集成在CPU内核中,以相同于主频的速度工作,结束了L2 Cache与CPU大差距分频的历史,使L2 Cache与L1 Cache在性能上平等,得到更高的传输速度。L2Cache只存储数据,因此不分数据Cache和指令Cache。在CPU核心不变化的情况下,增加L2 Cache的容量能使性能提升,同一核心的CPU高低端之分往往也是在L2 Cache上做手脚,可见L2 Cache的重要性。现在CPU的L1 Cache与L2 Cache惟一区别在于读取顺序。

3. 读取命中率

CPU在Cache中找到有用的数据被称为命中,当Cache中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有2级Cache的CPU中,读取L1 Cache的命中率为80%。也就是说CPU从L1 Cache中找到的有用数据占数据总量的80%,剩下的20%从L2 Cache读取。由于不能准确预测将要执行的数据,读取L2的命中率也在80%左右(从L2读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。在一些高端领域的CPU(像Intel的Itanium)中,我们常听到L3 Cache,它是为读取L2 Cache后未命中的数据设计的—种Cache,在拥有L3 Cache的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。

为了保证CPU访问时有较高的命中率,Cache中的内容应该按一定的算法替换。一种较常用的算法是“最近最少使用算法”(LRU算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此需要为每行设置一个计数器,LRU算法是把命中行的计数器清零,其他各行计数器加1。当需要替换时淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出Cache,提高Cache的利用率。

缓存技术的发展

总之,在传输速度有较大差异的设备间都可以利用Cache作为匹配来调节差距,或者说是这些设备的传输通道。在显示系统、硬盘和光驱,以及网络通讯中,都需要使用Cache技术。但Cache均由静态RAM组成,结构复杂,成本不菲,使用现有工艺在有限的面积内不可能做得很大,不过,这也正是技术前进的源动力,有需要才有进步!

CACHE 快取

CACHE是一种加速内存或磁盘存取的装置,可将慢速磁盘上的数据拷贝至快速的磁盘进行读写动作,以提升系统响应的速度。

其运作原理在于使用较快速的储存装置保留一份从慢速储存装置中所读取数据且进行拷贝,当有需要再从较慢的储存体中读写数据时,CACHE能够使得读写的动作先在快速的装置上完成,如此会使系统的响应较为快速。

举例来说,存取内存 (RAM) 的速度较磁盘驱动器快非常多,所以我们可以将一部份的主存储器保留当成磁盘CACHE,每当有磁盘读取的需求时就把刚读取的数据拷贝一份放在CACHE内存中,如果系统继续要求读取或写入同一份数据或同一扇区 (sector) 时,系统可以直接从内存中的CACHE部分作读写的动作,这样系统对磁盘的存取速度感觉上会快许多。

同样的,静态内存 (SRAM) 比动态内存 (DRAM) 的读写速度快,使用些静态内存作为动态内存的CACHE,也可以提升读写的效率。

内存不全部使用SRAM取代DRAM 的原因,是因为SRAM的成本较DRAM高出许多。

使用CACHE的问题是写入CACHE中的数据如果不立即写回真正的储存体,一但电源中断或其它意外会导致数据流失;但若因而每次都将数据写写回真正的储存体,又将会使得CACHE只能发挥加速读取的功能,而不能加速写入的速度,这样的状况使得CACHE写入的方式分为两类:

1. Write-Through: 每次遇到写入时就将数据写入真正的储存体。

2. Write-Back: 遇到写入时不一定回写,只纪录在CACHE内,并将该份数据标示为已更改(dirty),等系统有空或等到一定的时间后再将数据写回真正的储存体,这种做法是承担一点风险来换取效率。

由于很多时候系统不只有重复读写同一块区域,使用两组各自独立的CACHE效能通常比只使用一组较佳,这称为 2-Ways Associate,同样的,使用四组CACHE则称为4ways Associate,但更多组的CACHE会使得算法相对的复杂许多。

CACHE的效能依算法的使用而有好坏之分,估量的单位通常使用命中率 (hits),命中率较高者较佳。

新式的CPU上也有内建的CACHE,称为 LEVEL 1 (L1) 快取, 由于与 CPU 同频率运作,能比在主机板上的 LEVEL 2 (L2) CACHE提供更快速的存取效能。

简单地说当数字流冲向末端会造成时断时续时,有一个缓冲装置使它平稳不间断地运行。这个装置就是cache.

关注