事务属性五行分类表:谁知道微积分的原理

来源:百度文库 编辑:高考问答 时间:2024/04/26 22:51:17
谈你在学习中的看法

分上限的函数及其导数
设函数f(x)在区间[a,b]上连续,并且设x为[a,b]上的一点.现在我们来考察f(x)在部分区间[a,x]上的定积分 ,我们知道f(x)在[a,x]上仍旧连续,因此此定积分存在。
如果上限x在区间[a,b]上任意变动,则对于每一个取定的x值,定积分有一个对应值,所以它在[a,b]上定义了一个函数,记作φ(x):
注意:为了明确起见,我们改换了积分变量(定积分与积分变量的记法无关)
定理(1):如果函数f(x)在区间[a,b]上连续,则积分上限的函数 在[a,b]上具有导数,
并且它的导数是 (a≤x≤b)
(2):如果函数f(x)在区间[a,b]上连续,则函数 就是f(x)在[a,b]上的一个原函数。
注意:定理(2)即肯定了连续函数的原函数是存在的,又初步揭示了积分学中的定积分与原函数之间的联系。
牛顿--莱布尼兹公式
定理(3):如果函数F(x)是连续函数f(x)在区间[a,b]上的一个原函数,则

注意:此公式被称为牛顿-莱布尼兹公式,它进一步揭示了定积分与原函数(不定积分)之间的联系。
它表明:一个连续函数在区间[a,b]上的定积分等于它的任一个原函数再去见[a,b]上的增量。因此它就
给定积分提供了一个有效而简便的计算方法。

阿基米德与牛顿、莱布尼茨的微积分 有人问,微积分不是由牛顿和莱布尼茨创立的吗,怎么会与相隔二千多年的阿基米德有联系呢?但实际情况确实如此。在十六世纪后半叶,牛顿和菜布尼茨在许多数学家所做的大量准备工作的基础上,各自独立地创立了徽积分。但微积分的原理,就可以追溯到古希腊人阿基米德所建立的确定面积和体积的方法。远在阿基米德那个时代(公元前二百多年),没有解析几何,甚至连发达的字母符号也没有,可是几何学在古希腊已经达到了惊人的繁荣。直到今天,在初等的几何学中我们还很难再添加多少新的东西。正是在这种历史条件下,阿基米德率先推导出了球、圆锥的体积,以及抛物线的弓形面积,他所采用的无穷小量求和的方法已经接近于积分演算。后人在介绍阿基米德这种方法的时候,又用现代的符号和术语进行了加工。下面以阿基米德推导抛物线的弓形面积为例,介绍他采用的无穷小量求和的方法。设有一抛物线 (不妨令a>0),求其与横轴x及直线x=p(p>0)所围的面积,即如图所示曲边三角形OMP的面积S。阿基米德是这样想的:设OP=l,将OP分成n等份。曲边三角形OMP被分割成n个带状面积元,这些面积元可近似地看成矩形,各条“带了”的宽度是 ,第k条带子的高是当 处抛物线的纵坐标,即 。所以第k条带子的面积是 各条矩形带子的面积和为这里,S’是曲边三角形OPM的近似面积,当x→∞时就得到曲边三角形OPM的精确面积S。曲边三角形OPM的面积求出后,再求抛物线弓形面积就十分容易了,即我们最感兴趣的还不是上面这个结论本身,而是阿基米德的思想方法,正是这种分解为无穷多个无穷小量之和的方法,在两千年后发展成为积分学。阿基米德当时也曾预言:“我认为在现时或未来的研究者中,总会有人会利用这里所提出的方法获得我还不曾得到的其他定理。”果然如此,他的方法在另一种历史条件下获得了新的发展和新的形式,牛顿、莱布尼茨建立了更加一般的方法,并且给了一个恰当的名词:积分。牛顿和莱布尼茨虽然各自独立地建立了微积分,但他们所做的创造性工作有很大的不同。牛顿是从物理学观点上来研究数学的,他创立的微积分学原理是与他的力学研究分不开的。1687年牛顿出版了他的名著《自然哲学的数学原理》,这本书是研究天体力学的,微积分的一些基本概念和原理就包括在这本书中。莱布尼茨却是从几何学观点独立发现微积分的。他从1684年起发表了一系列微积分著作,他力图找到普遍的方法来解决数学分析中的问题。其最大功绩是创造了反映事物本质的数学符号。数学分析中的基本概念的记号,例如微分dx、、二阶微分 、积分 、导数 等都是莱布尼茨提出来的,这些记号沿用至今,非常适用、便利。牛顿和菜布尼茨两人工作的主要区别是,牛顿是以x和y的无穷小增量作为求导数的手段当增量越来越小的时候,导数实际上就是增量的比的极限;而莱布尼茨却直接用x和y的无穷小增量(即微分)求出它们之间的关系。这个差别反映了牛顿的物理学方向和莱布尼茨的几何学方向。在物理学方向中,速度之类是中心的概念,而几何学却着眼于面积、体积的计算。他们的差别还在于,牛顿自由地用级数表示函数,而莱布尼茨宁愿用有限的形式。他们的工作方式也不同,牛顿是经验的、具体的和谨慎的,而莱布尼茨是富于想象的、喜欢推广的而且是大胆的。他们对记号的关心也有差别,牛顿认为用什么记号无关紧要,而莱布尼茨却花费了很多时间来选择富有提示性的符号。令人遗憾的是,两人在各自创立了微积分后,历史上发生过优先权的争论,从而使数学家分裂成两派。欧洲大陆的数学家,尤其是瑞士数学家雅科布·贝努利(1654-1705)和约翰·贝努利(1667-1748)兄弟支持莱布尼茨,而英国数学家捍卫牛顿。两派激烈争吵,甚至尖锐地互相敌对、嘲笑。牛顿和莱布尼茨去世很久以后,经调查证实:事实上,他们各自独立地创立了微积分,只不过牛顿(1665年至1666年期间)先于菜布尼茨(1673年至1676年期间)制定了微积分,而莱布尼茨(1684年至1686年期间)早于牛顿(1704年至1736年期间)公开发表微积分。这件事的结果,英国和欧洲大陆的数学家停止了思想交换,使英国人在数学上落后了一百年。因为牛顿的《自然哲学的数学原理》一书使用的是几何方法,英国人差不多一百年中照旧以几何作为主要工具。而欧洲大陆的数学家继续用莱布尼茨的分析法,并且使微积分更加完善。在这一百年中,英国人甚至连欧洲大陆通用的微积分符号都不认识。对这一不幸的事件,是当初的阿基米德,甚至后来的做了大量准备工作的大小数学家们无论如何也预料不到的。

柯西1789年8月2l日出生生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。
柯西在幼年时,他的父亲常带领他到法国参议院内的办公室,并且在那里指导他进行学习,因此他有机会遇到参议员拉普拉斯和拉格朗日两位大数学家。他们对他的才能十分常识;拉格朗日认为他将来必定会成为大数学家,但建议他的父亲在他学好文科前不要学数学。
柯西于1802年入中学。在中学时,他的拉丁文和希腊文取得优异成绩,多次参加竞赛获奖;数学成绩也深受老师赞扬。他于1805年考入综合工科学校,在那里主要学习数学和力学;1807年考入桥梁公路学校,1810年以优异成绩毕业,前往瑟堡参加海港建设工程。
柯西去瑟堡时携带了拉格朗日的解析函数论和拉普拉斯的天体力学,后来还陆续收到从巴黎寄出或从当地借得的一些数学书。他在业余时间悉心攻读有关数学各分支方面的书籍,从数论直到天文学方面。根据拉格朗日的建议,他进行了多面体的研究,并于1811及1812年向科学院提交了两篇论文,其中主要成果是:
(1)证明了凸正多面体只有五种(面数分别是4,6,8,l 2,20),星形正多面体只有四种(面数是l2的三种,面数是20的一种)。
(2)得到了欧拉关于多面体的顶点、面和棱的个数关系式的另一证明并加以推广。
(3)证明了各面固定的多面体必然是固定的,从此可导出从未证明过的欧几里得的一个定理。
这两篇论文在数学界造成了极大的影响。柯西在瑟堡由于工作劳累生病,于1812年回到巴黎他的父母家中休养。
柯西于18l3年在巴黎被任命为运河工程的工程师,他在巴黎休养和担任工程师期间,继续潜心研究数学并且参加学术活动。这一时期他的主要贡献是:
(1)研究代换理论,发表了代换理论和群论在历史上的基本论文。
(2)证明了费马关于多角形数的猜测,即任何正整数是个角形数的和。这一猜测当时已提出了一百多年,经过许多数学家研究,都没有能够解决。以上两项研究是柯西在瑟堡时开始进行的。
(3)用复变函数的积分计算实积分,这是复变函数论中柯西积分定理的出发点。
(4)研究液体表面波的传播问题,得到流体力学中的一些经典结果,于1815年得法国科学院数学大奖。
以上突出成果的发表给柯西带来了很高的声誉,他成为当时一位国际上著名的青年数学家。
1815年法国拿破仑失败,波旁王朝复辟,路易十八当上了法王。柯西于1816年先后被任命为法国科学院院士和综合工科学校教授。1821年又被任命为巴黎大学力学教授,还曾在法兰西学院授课。这一时期他的主要贡献是:
(1)在综合工科学校讲授分析课程,建立了微积分的基础极限理论,还阐明了极限理论。在此以前,微积分和级数的概念是模糊不清的。由于柯西的讲法与传统方式不同,当时学校师生对他提出了许多非议。
柯西在这一时期出版的著作有《代数分析教程》、《无穷小分析教程概要》和《微积分在几何中应用教程》。这些工作为微积分奠定了基础,促进了数学的发展,成为数学教程的典范。
(2)柯西在担任巴黎大学力学教授后,重新研究连续介质力学。在1822年的一篇论文中,他建立了弹性理论的基础。
(3)继续研究复平面上的积分及留数计算,并应用有关结果研究数学物理中的偏微分方程等。
他的大量论文分别在法国科学院论文集和他自己编写的期刊“数学习题”上发表。
1830年法国爆发了推翻波旁王朝的革命,法王查理第十仓皇逃走,奥尔良公爵路易·菲力浦继任法王。当时规定在法国担任公职必须宣誓对新法王效忠,由于柯西属于拥护波旁王朝的正统派,他拒绝宣誓效忠,并自行离开法国。他先到瑞士,后于1832~1833年任意大利都灵大学数学物理教授,并参加当地科学院的学术活动。那时他研究了复变函数的级数展开和微分方程(强级数法),并为此作出重要贡献。
1833~1838年柯西先在布拉格、后在戈尔兹担任波旁王朝“王储”波尔多公爵的教师,最后被授予“男爵”封号。在此期间,他的研究工作进行得较少。
1838年柯西回到巴黎。由于他没有宣誓对法王效忠,只能参加科学院的学术活动,不能担任教学工作。他在创办不久的法国科学院报告“和他自己编写的期刊分析及数学物理习题”上发表了关于复变函数、天体力学、弹性力学等方面的大批重要论文。
1848年法国又爆发了革命,路易·菲力浦倒台,重新建立了共和国,废除了公职人员对法王效忠的宣誓。柯西于1848年担任了巴黎大学数理天文学教授,重新进行他在法国高等学校中断了18年的教学工作。
1852年拿破仑第三发动政变,法国从共和国变成了帝国,恢复了公职人员对新政权的效忠宣誓,柯西立即向巴黎大学辞职。后来拿破仑第三特准免除他和物理学家阿拉果的忠诚宣誓。于是柯西得以继续进行所担任的教学工作,直到1857年他在巴黎近郊逝世时为止。柯西直到逝世前仍不断参加学术活动,不断发表科学论文。
柯西是一位多产的数学家,他的全集从1882年开始出版到1974年才出齐最后一卷,总计28卷。他的主要贡献如下;
(一)单复变函数
柯西最重要和最有首创性的工作是关于单复变函数论的。18世纪的数学家们采用过上、下限是虚数的定积分。但没有给出明确的定义。柯西首先阐明了有关概念,并且用这种积分来研究多种多样的问题,如实定积分的计算,级数与无穷乘积的展开,用含参变量的积分表示微分方程的解等等。
(二)分析基础
柯西在综合工科学校所授分析课程及有关教材给数学界造成了极大的影响。自从牛顿和莱布尼茨发明微积分(即无穷小分析,简称分析)以来,这门学科的理论基础是模糊的。为了进一步发展,必须建立严格的理论。柯西为此首先成功地建立了极限论。
在柯西的著作中,没有通行的语言,他的说法看来也不够确切,从而有时也有错误,例如由于没有建立一致连续和一致收敛概念而产生的错误。可是关于微积分的原理,他的概念主要是正确的,其清晰程度是前所未有的。例如他关于连续函数及其积分的定义是确切的,他首先准确地证明了泰勒公式,他给出了级数收敛的定义和一些判别法。
(三)常微分方程
柯西在分析方面最深刻的贡献在常微分方程领域。他首先证明了方程解的存在和唯一性。在他以前,没有人提出过这种问题。通常认为是柯西提出的三种主要方法,即柯西—利普希茨法,逐渐逼近法和强级数法,实际上以前也散见到用于解的近似计算和估计。柯西的最大贡献就是看到通过计算强级数,可以证明逼近步骤收敛,其极限就是方程的所求解。
(四)其他贡献
虽然柯西主要研究分析,但在数学中各领域都有贡献。关于用到数学的其他学科,他在天文和光学方面的成果是次要的,可是他却是数理弹性理论的奠基人之一。除以上所述外,他在数学中其他贡献如下:
1.分析方面:在一阶偏微分方程论中行进丁特征线的基本概念;认识到傅立叶变换在解微分方程中的作用等等。
2.几何方面:开创了积分几何,得到了把平面凸曲线的长用它在平面直线上一些正交投影表示出来的公式。
3.代数方面:首先证明了阶数超过了的矩阵有特征值;与比内同时发现两行列式相乘的公式,首先明确提出置换群概念,并得到群论中的一些非平凡的结果;独立发现了所谓“代数要领”,即格拉斯曼的外代数原理。

牛顿--莱布尼兹公式

大一高数书上都有。

微积分怎么能用几百个字说明白!!