狮子王意大利版片尾曲:微生物的特征和分布

来源:百度文库 编辑:高考问答 时间:2024/04/27 15:05:44

微生物是包括细菌、病毒、真菌以及一些小型的原生动物等在内的一大类生物群体,它个体微小,却与人类生活密切相关。微生物在自然界中可谓“无处不在,无处不有”,涵盖了有益有害的众多种类,广泛涉及健康、医药、工农业、环保等诸多领域。

微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。

微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。

微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。

随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。

以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的发展产生巨大影响。牛痘疫苗的应用使人类历史上首次成功消灭了一种疾病——天花,而目前的基因工程疫苗也为疾病的有效预防发挥了巨大作用,如乙肝病毒的预防等。

从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。
工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程,对其进行的基因组学研究将有利于找到关键的功能基因,然后对菌株加以改造,使其更适于工业化的生产过程。国内维生素C两步发酵法生产过程中的关键菌株氧化葡萄糖酸杆菌的基因组研究,将在基因组测序完成的前提下找到与维生素C生产相关的重要代谢功能基因,经基因工程改造,实现新的工程菌株的构建,简化生产步骤,降低生产成本,继而实现经济效益的大幅度提升。对工业微生物开展的基因组研究,不断发现新的特殊酶基因及重要代谢过程和代谢产物生成相关的功能基因,并将其应用于生产以及传统工业、工艺的改造,同时推动现代生物技术的迅速发展。

农业微生物基因组研究认清致病机制发展控制病害的新对策

据资料统计,全球每年因病害导致的农作物减产可高达20%,其中植物的细菌性病害最为严重。除了培植在遗传上对病害有抗性的品种以及加强园艺管理外,似乎没有更好的病害防治策略。因此积极开展某些植物致病微生物的基因组研究,认清其致病机制并由此发展控制病害的新对策显得十分紧迫。

经济作物柑橘的致病菌是国际上第一个发表了全序列的植物致病微生物。还有一些在分类学、生理学和经济价值上非常重要的农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及我国正在开展的黄单胞菌的研究等正在进行之中。日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。

环境保护微生物基因组研究找到关键基因降解不同污染物

在全面推进经济发展的同时,滥用资源、破坏环境的现象也日益严重。面对全球环境的一再恶化,提倡环保成为全世界人民的共同呼声。而生物除污在环境污染治理中潜力巨大,微生物参与治理则是生物除污的主流。微生物可降解塑料、甲苯等有机物;还能处理工业废水中的磷酸盐、含硫废气以及土壤的改良等。微生物能够分解纤维素等物质,并促进资源的再生利用。对这些微生物开展的基因组研究,在深入了解特殊代谢过程的遗传背景的前提下,有选择性的加以利用,例如找到不同污染物降解的关键基因,将其在某一菌株中组合,构建高效能的基因工程菌株,一菌多用,可同时降解不同的环境污染物质,极大发挥其改善环境、排除污染的潜力。美国基因组研究所结合生物芯片方法对微生物进行了特殊条件下的表达谱的研究,以期找到其降解有机物的关键基因,为开发及利用确定目标。

极端环境微生物基因组研究深入认识生命本质应用潜力极大

在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。

有一种嗜极菌,它能够暴露于数千倍强度的辐射下仍能存活,而人类一个剂量强度就会死亡。该细菌的染色体在接受几百万拉德a射线后粉碎为数百个片段,但能在一天内将其恢复。研究其DNA修复机制对于发展在辐射污染区进行环境的生物治理非常有意义。开发利用嗜极菌的极限特性可以突破当前生物技术领域中的一些局限,建立新的技术手段,使环境、能源、农业、健康、轻化工等领域的生物技术能力发生革命。来自极端微生物的极端酶,可在极端环境下行使功能,将极大地拓展酶的应用空间,是建立高效率、低成本生物技术加工过程的基础,例如PCR技术中的TagDNA聚合酶、洗涤剂中的碱性酶等都具有代表意义。极端微生物的研究与应用将是取得现代生物技术优势的重要途径,其在新酶、新药开发及环境整治方面应用潜力极大。

地球的起源和演化:
I 地球的起源:
地球起源问题是同太阳系的起源紧密相联系的,因此探讨地球的起源问题,首先了解目前太阳系的三个主要特征是必要的。概括起来说,它们是:
1.太阳系中的九大行星,都按反时针方向绕太阳公转。太阳本身也以同一方向自转,这个特征称为太阳系天体运动的同向性。
2.上述行星绕太阳公转的轨道面,非常接近于同一平面,并且这个平面与太阳自转赤道面的夹角也不到6°,这个特征称为行星轨道运动的共面性。
3.除水星和冥王星外,其它所有行星的绕日公转轨道都很接近于圆轨道。这个特征称为行星轨道运动的近圆性。
关于地球的起源问题,已有相当长的探讨历史了。在古代,人们就曾探讨了包括地球在内的天地万物的形成问题,在此期间,逐渐形成了关于天地万物起源的“创世说”。其中流传最广的要算是《圣经》中的创世说。在人类历史上,创世说曾在相当长的一段时期内占据了统治地位。
自1543年波兰天文学家哥白尼提出了日心说以后,天体演化的讨论突破了宗教神学的桎梏,开始了对地球和太阳系起源问题的真正科学探讨。1644年,笛卡儿(R.Descartes)在他的《哲学原理》一书中提出了第一个太阳系起源的学说,他认为太阳、行星和卫星是在宇宙物质涡流式的运动中形成的大小不同的旋涡里形成的。一个世纪之后,布封(G.L.L. de Buffon)于1745年在《一般和特殊的自然史》中提出第二个学说,认为:一个巨量的物体,假定是彗星,曾与太阳碰撞,使太阳的物质分裂为碎块而飞散到太空中,形成了地球和行星。事实上由于彗星的质量一般都很小,不可能从太阳上撞出足以形成地球和行星的大量物质的。在布封之后的200年间,人们又提出了许多学说,这些学说基本倾向于笛卡尔的“一元论”,即太阳和行星由同一原始气体云凝缩而成;也有“二元论”观点,即认为行星物质是从太阳中分离出来的。1755年,著名德国古典哲学创始人康德(I. Kant)提出“星云假说”。1796年,法国著名数学和天文学家拉普拉斯(P. S. Laplace)在他的《宇宙体系论》一书中,独立地提出了另一种太阳系起源的星云假说。由于拉普拉斯和康德的学说在基本论点上是一致的,所以后人称两者的学说为"康德-拉普拉斯学说"。整个十九世纪,这种学说在天文学中一直占有统治的地位。
到本世纪初,由于康德-拉普拉斯学说不能对太阳系的越来越多的观测事实作出令人满意的解释,致使“二元论”学说再度流行起来。1900年,美国地质学家张伯伦(T. C. Chamberlain)提出了一种太阳系起源的学说,称为“星子学说”;同年,摩耳顿(F. R. Moulton)发展了这个学说,他认为曾经有一颗恒星运动到离太阳很近的距离,使太阳的正面和背面产生了巨大的潮汐,从而抛出大量物质,逐渐凝聚成了许多固体团块或质点,称为星子,进一步聚合成为行星和卫星。
现代的研究表明,由于宇宙中恒星之间相距甚远,相互碰撞的可能性极小,因此,摩耳顿的学说不能使人信服。由于所有灾变说的共同特点,就是把太阳系的起源问题归因于某种极其偶然的事件,因此缺少充分的科学依据。著名的中国天文学家戴文赛先生于1979年提出了一种新的太阳系起源学说,他认为整个太阳系是由同一原始星云形成的。这个星云的主要成份是气体及少量固体尘埃。原始星云一开始就有自转,并同时因自引力而收缩,形成星云盘,中间部分演化为太阳,边缘部分形成星云并进一步吸积演化为行星。
总的来说,关于太阳系的起源的学说已有40多种。本世纪初期迅速流行起来的灾变说,是对康德-拉普拉斯星云说的挑战;本世纪中期兴起的新的星云说,是在康德-拉普拉斯学说基础上建立起来的更加完善的解释太阳系起源的学说。人们对地球和太阳系起源的认识也是在这种曲折的发展过程中得以深化的。
至此,我们可以对形成原始地球的物质和方式给出如下可能的结论。形成原始地球的物质主要是上述星云盘的原始物质,其组成主要是氢和氦,它们约占总质量的98%。此外,还有固体尘埃和太阳早期收缩演化阶段抛出的物质。在地球的形成过程中,由于物质的分化作用,不断有轻物质随氢和氦等挥发性物质分离出来,并被太阳光压和太阳抛出的物质带到太阳系的外部,因此,只有重物质或土物质凝聚起来逐渐形成了原始的地球,并演化为今天的地球。水星、金星和火星与地球一样,由于距离太阳较近,可能有类似的形成方式,它们保留了较多的重物质;而木星、土星等外行星,由于离太阳较远,至今还保留着较多的轻物质。关于形成原始地球的方式,尽管还存在很大的推测性,但大部分研究者的看法与戴文赛先生的结论一致,即在上述星云盘形成之后,由于引力的作用和引力的不稳定性,星云盘内的物质,包括尘埃层,因碰撞吸积,形成许多原小行星或称为星子,又经过逐渐演化,聚成行星,地球亦就在其中诞生了。根据估计,地球的形成所需时间约为1千万年至1亿年,离太阳较近的行星(类地行星),形成时间较短,离太阳越远的行星,形成时间越长,甚至可达数亿年。
至于原始的地球到底是高温的还是低温的,科学家们也有不同的说法。从古老的地球起源学说出发,大多数人曾相信地球起初是一个熔融体,经过几十亿年的地质演化历程,至今地球仍保持着它的热量。现代研究的结果比较倾向地球低温起源的学说。地球的早期状态究竟是高温的还是低温的,目前还存在着争论。然而无论是高温起源说还是低温起源说,地球总体上经历了一个由热变冷的阶段,由于地球内部又含有热源,因此这种变冷过程是极其缓慢的,直到今天地球仍处于继续变冷的过程中。
II 地球的演化:
地表的基本轮廓可以明显地分为两大部分,即大陆和大洋盆地。大陆是地球表面上的高地,大洋盆地是相对低洼的区域,它为巨量的海水所充填。大陆和大洋盆地共同构成了地球岩石圈的基本组成部分。因此,岩石圈的演化问题,也就是大陆和大洋盆地的构造演化问题。
大陆的起源和演化:
现在,绝大部分地球科学家都确认大陆漂移现象,并一致认为地球上海洋与陆地的结构分布和变化与大陆漂移运动直接相关。比较坚硬的地球岩石圈板块作为一个单元在其之下的地球软流圈上运动;由于岩石圈板块的相对运动,导致了大陆漂移,并形成了今天地球上的海洋和陆地的分布。地球岩石圈可分为大洋岩石圈和大陆岩石圈,总体上,前者的厚度是后者的一半,其中大洋岩石圈厚度很不均匀,最厚处可达80公里。
大部分大型的地球板块由大陆岩石圈和大洋岩石圈组成,但面积巨大的太平洋板块由单一的大洋岩石圈构成。地球上陆地面积约占整个地球面积的30%,其中约70%的陆地分布在北半球,并且位于近赤道和北半球中纬度地区,这很可能与地球自转引起的大陆岩块的离极运动有关。
在全球范围内,分布在大陆附近的大陆壳岛屿几乎全部位于大陆的东海岸一侧,个别一些大陆东部边缘,则被一连串的大陆壳岛屿构成的花彩状岛群所环绕,形成了显著的向东凸出的岛弧。这种全球大陆壳岛屿的分布特征,可以用岩石圈板块的普遍向西运动和边缘海底的扩张理论来加以解释。长期以来,人们就注意到地表上的某些大陆构造能够拼合在一起,这就好像是一个拼板玩具,特别是非洲的西海岸与南美洲的东海岸之间的吻合性最为明显。这种现象可以用大陆岩石圈的直接破裂和大陆岩块体的长期漂移得到解释。这就是我们后面将要介绍的关于杜托特提出的现今的大陆是由北半球的劳亚古陆和南极洲附近的冈瓦纳古陆的破裂后漂移形成的。
1966年,梅纳德(H. W. Menard)等汇集了当时所有的有关海洋深度的探测资料,再度进行了世界海洋深度的统计,得到全球陆地在海平面以上的平均高程为0.875公里,大洋的平均深度为3.729公里。大陆和大洋之间存在为海水所淹没的数拾公里宽的边缘地带,这个地带包括大陆架和大陆坡,两者共占地球表面积的10.9%。大陆地壳和大洋地壳的差异非常明显,大陆地壳的化学成份主要是花岗岩质,而大洋盆地下的岩石主要是由玄武岩或辉长岩构成。因此,整个地壳又可以分为大陆硅铝壳和大洋硅镁壳两大类型。
有关大陆的起源问题,地质和地球物理学家杜托特(A.L.Du Toit)于1937年在他的《我们漂移的大陆》一书中提出了地球上曾存在两个原始大陆的模式。如果这个模式成立,那么这两个原始大陆分别被称为劳亚古陆(Lanrasia)和冈瓦纳古陆(Gondwanaland);这实际上就象以前魏格纳等人所主张的那样,把全球大陆只拼合为一个古大陆。杜托特认为,两个原始大陆原来是在靠近地球两极处形成的,其中劳亚古陆在北,冈瓦纳古陆在南,在它们形成以后,便逐渐发生破裂,并漂移到今天大陆块体的位置。
早在19世纪末,地质家学休斯(E. Suess)已认识到地球南半球各大陆的地质构造非常相似,并将其合并成一个古大陆进行研究,并称其为冈瓦纳古陆,这个名称源于印度东中部的一个标准地层区名称(Gondwana)。冈瓦纳古陆包括现今的南美洲、非洲、马达加斯加岛、阿拉伯半岛、印度半岛、斯里兰卡岛、南极洲、澳大利亚和新西兰。它们均形成于相同的地质年代,岩层中都存在同种的植物化石,被称为冈瓦纳岩石。杜托特用以证明劳亚古陆和冈瓦纳古陆的存在和漂移的主要证据,是来自地质学、古生物学和古气候学方面。根据三十多年中积累起来的资料,有力地证明冈瓦纳古陆的理论基本上是正确的。
劳亚古陆是欧洲、亚洲和北美洲的结合体,这些陆块即使在现在还没有离散得很远。劳亚古陆有着很复杂的形成和演化历史,它主要由几个古老的陆块合并而成,其中包括古北美陆块、古欧洲陆块、古西伯利亚陆块和古中国陆块。在晚古生代(距今约3亿年前)这些古陆块逐步靠扰并碰撞,大致在石炭纪早中期至二叠纪(即2亿至2亿7千万年前)才逐步闭合。古地质、古气候和古生物资料表明,劳亚古陆在石炭~二叠纪时期位于中、低纬度带。在中生代以后(即最近的1-2亿年间)劳亚大陆又逐步破裂解体,从而导致北大西洋扩张形成。研究表明,全球新的造山地带的形成和分布,都是劳亚古陆和冈瓦纳古陆破裂和漂移的构造结果。在这过程中,大陆岩块的不均匀向西运动和离极运动的规律十分明显。总的看来,劳亚古陆曾位于北半球的中高纬度带,冈瓦纳古陆则曾一度位于南半球的南极附近;这两个大陆之间由被称为古地中海(也称为特提斯地槽)的区域所分隔开。
在杜托特(1937年)提出劳亚古陆与冈瓦纳古陆理论之前,魏格纳(A.L.Wegener)早在1912年曾提出了地球上曾只有一个原始大陆存在的理论,称为联合古陆。魏格纳认为,它是在石炭纪时期(距今约2.2亿-2.7亿年前)形成的。魏格纳把联合古陆作为他描述大陆漂移的出发点。然而根据人们现在的认识,魏格纳所提出的联合古陆决不是一个原始的大陆。虽然仍有很大一部分人赞同联合古陆观点,但他们所作出的古大陆复原图与魏格纳所提出的复原图相比,已存在很大的差别,相反倒有些接近杜托特的两个古大陆分布的理论。
最近2亿年以来的大陆漂移和板块运动,已得到了确切证明和广泛的承认。然而有人推测,板块运动很可能早在30亿年前就已经开始了,而且不同地质时期的板块运动速度是不同的,大陆之间曾屡次碰撞和拼合,以及反复破裂和分离。大陆岩块的多次碰撞形成了褶皱山脉,并连接在一起形成新的大陆,而由大洋底扩张形成新的大洋盆地。因此,要准确复原出大陆在2亿多年前所谓的"漂移前的漂移"是十分困难的。地球的年龄已有46亿年历史,目前已经知道地球上最古老的岩石年龄为37亿年,并且分布的面积相当小。这样,从46亿年到37亿年间,约有9亿年的间隔完全缺失地质资料。此外,地球上25亿年前的地质记录也非常有限,这对研究地球早期的历史状况带来不少困难,因此,直到现在我们还没有一个关于地球早期历史的统一的理论。
大洋的起源与演化:
有关大洋的起源和演化研究从本世纪初才开始,在此之前一般认为大洋盆地是地球表面上永存的形态,也即大洋盆地自从贮水形成以来,其位置和分布格局是固定的。随着地球科学的发展,特别是本世纪初以魏格纳为首的大陆漂移这一革命性的学说的提出,对自最近的2亿多年以来大洋的起源和演化有了突破性的认识。
对于大陆漂移学说,并非一开始就得到许多人支持的,因为当时对引起大陆漂移的机制,即力源问题并没有很好解决。1931年,霍姆斯等人提出了地幔对流学说,用于解释大陆漂移的力源,然而这个观点在当时很少受到人们的注意。19世纪后期,有人建立了地球收缩的全球构造学说,用于解释地球上为什么会有如此大规模的造山运动。然而,本世纪50年代以后,随着全球性大洋中裂谷的巨大拉张性证据的发现,收缩学说被普遍放弃了,与此同时,地球膨胀学说很快流行起来。膨胀说认为,地球开始时很小,直径是现今地球的一半。由于地球大幅度膨胀,原始地壳裂开成为现在的大陆,裂开的地方经过不断发展成为现代的大洋盆地。并且,由于地球的大幅度膨胀引起的所谓大陆漂移,表明大陆块基本上是停留在原地的,即各大陆之间和大陆相对于地幔之间并没有发生过显著的移动。由于膨胀说无法解释大陆地壳上广泛发育的褶皱山脉构造特征是怎么形成的,霍姆斯等人的地幔对流说很快再次被重视。60年代初,随着洋底探测资料的迅速积累,赫斯(H. H. Hess)和迪茨(R. S. Dietz)首先把地幔对流方案发展为海底扩张的学说。赫斯在1962年发表了《大洋盆地的历史》一文,提出了大洋起源的新观点,即海底扩张理论。赫斯认为洋底的主要构造就是由地幔对流作用的直接表现。海底扩张理论证明,大陆和洋底是在对流着的地幔上被动地移动着,而不像早期的大陆漂移说所主张的大陆在洋底上主动漂移。海底扩张理论提出后不久,一些别的洋底观测结果,诸如洋底地壳构造、地磁、地震震源和地热流量分布等对这个理论提供了有力证据。这种情况下,使得大部分的学者都转向了关于海底扩张的研究。现在已经普遍确认,可以用海底扩张和板块运动理论解释大洋起源和演化,大洋盆地的固定论看来是过时了。海底扩张和板块构造学说对大洋的起源和演化的理论解释的基础都是地幔对流说。
现代研究证实,大洋最初是在大陆内部孕育的,并开始于大陆岩石圈中的裂谷。大陆在裂谷处破裂并相互分离,从而开始产生新的大洋盆地。魏格纳曾把南大西洋两对岸的吻合作为阐述大陆漂移说的出发点。事实上,把南美洲与非洲两大陆拼合到一起,不仅大陆边沿地形轮廓非常吻合,而且岩石类型和地质构造也可以对接起来。现已证明,大西洋在二叠纪(2亿5千万年前)时还根本不存在,据估计,形成中大西洋的大陆裂谷发生在稍后的三叠纪(约1亿6千万-1亿9千万年前)。至侏罗纪末期(约1亿2千万年前),中大西洋可能已张开达1000公里的宽度;南大西洋的张开大约开始于早白垩纪(约1亿1千万年前),而最初的裂谷发生在晚侏罗纪(约1亿3千万年前);北大西洋张开最晚,大约开始于第三纪初(约6000-7000万年前),与此同时,由北大西洋裂谷向东北延展而伸入格陵兰与欧洲之间,挪威海随之张裂开。从6千万年到2千万年前,挪威海、巴芬海和北大西洋主体都在扩张,但速率和方向均有些变化。综上所述,现今的那些广阔的大洋盆地并不是从来如此,而是长期的地球运动和演化的结果。大洋由狭窄海湾到宽阔盆地的发展,是通过持续发生的大规模海底扩张过程实现的。海底扩张和板块运动的动力都是地幔对流。
由于地球原始地壳自从形成以来,从来没有停止过大规模的地质构造形态的运动。因此,
可以肯定地说,现在地球上大洋和陆地的形态就是过去数拾亿年来大规模地壳运动的结果。