棺材里七星垫背图咋摆:飞机是靠什么力量浮在空中的?

来源:百度文库 编辑:高考问答 时间:2024/04/27 19:00:35
客机的气流是怎么流动的?直升机呢(转弯时怎么办)?

飞机为什么会飞起来

一、飞行原理

飞机在空气中运动时,是靠机翼产生升力使飞机离陆升空的。机翼升力是怎样产生的呢?这首先得从气流的基本原理谈起。在日常生活中,有风的时候,我们会感到有空气流过身体,特别凉爽;无风的时候,骑在自行车上也会有同样的体会,这就是相对气流的作用结果。滔滔江水,流经河道窄的地方时,水流速度就快;经过河道宽的地方时,水流变缓,流速较慢。空气也是一样,当它流过一根粗细不等的管子时,由于空气在管子里是连续不断地稳定流动,在空气密度不变的情况下,单位时间内从管道粗的一端流进多少,从细的一端就要流出多少。因此空气通过管道细的地方时,必须加速流动,才能保证流量相同。由此我们得出了流动空气的特性:流管细流速快;流管粗流速慢。这就是气流连续性原理。

实践证明,空气流动的速度变化后,还会引起压力变化。当流体稳定流过一个管道时,流速快的地方压力小。流速慢的地方压力大。

飞机在向前运动时,空气流到机翼前缘,分为上下两股,流过机翼上表现的流线,受到凸起的影响,使流线收敛变密,流管(把两条临近的流线看成管子的管壁)变细;而流过下表面的流线也受凸起的影响,但下表面的凸起程度明显小于上表面,所以,相对于上表面来说流线较疏松,流管较粗。由于机翼上表面流管变细,流速加快,压力较小,而下表面流管粗,流速慢,压力较大。这样在机翼上、下表面出现了压力差。这个作用在机翼各切面上的压力差的总和便是机翼的升力(见图)。其方向与相对气流方向垂直;其大小主要受飞行速度、迎角(翼弦与相对气流方向之间的夹角)、空气密度、机翼切面形状和机翼面积等因素的影响。当然,飞机的机身、水平尾翼等部位也能产生部分升力,但机翼升力是飞机升空的主要升力源。飞机之所以能起飞落地,主要是通过改变其升力的大小而实现的。这就是飞机能离陆升空并在空中飞行的奥秘。

二、飞机的主要组成部队及其功用

自从世界上出现飞机以来,飞机的结构形式虽然在不断改进,飞机类型不断增多,但到目前为止,除了极少数特殊形式的飞机之外,大多数飞机都是由下面六个主要部分组成,即:机翼、机身、尾翼、起落装置、操纵系统和动力装置。它们各有其独特的功用。

(一)机身

机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。

(二)机翼

机翼是飞机上用来产生升力的主要部件,一般分为左右两个翼面。

机翼通常有平直翼、后掠翼、三角翼等。机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。襟翼平时处于收上位置,起飞着陆时放下。

飞机的机翼的变化

在飞机诞生之初,机翼的形状千奇百怪,有的像鸟的翅膀,有的像蝙蝠的黑翼,有的像昆虫的翅膀;有的是单机翼,有的是双机翼。到第二次世界大战时,虽然绝大多数飞机"统一)到单机翼上来,但单机翼的位置又有上单机翼、中单机翼和下单机翼之分,其形状有平直机翼、后掠机翼、三角机翼、梯形机翼、变后掠角机翼和前掠角机翼之别。

(三)尾翼

尾翼分垂直尾翼和水平尾翼两部分。

1.垂直尾翼

垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。

通常垂直尾翼后缘设有方向舵。飞行员利用方向舵进行方向操纵。当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。同样,蹬左舵时,方向舵左偏,机头左偏。某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。

2.水平尾翼

水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生附加的负升力(向下的升力),此力对飞机重心产生一个使机头上仰的力矩,从而使飞机抬头。同样飞行员推杆时升降舵下偏,飞机低头。

超音速飞机采用全动平尾,即将水平安定面与升降舵合为一体。飞行员推拉杆时整个水平尾翼都随之偏转。飞行员用全动平尾来进行俯仰操纵。其操纵原理与升降舵相同。

某些高速飞机为了提高滚转性能,在左、右压杆时,左、右平尾反向偏转,以产生附加的滚转力矩,这种平尾称为差动平尾。

有些飞机的水平尾翼放在机翼前边,这种飞机叫鸭式飞机。这时放在机翼前面的水平尾翼称为鸭翼或前翼。也有一部分飞机没有水平尾翼,这种飞机称为无尾飞机。

现在有些飞机还采用了三翼面的布局方法,也就是说既有机翼前面的前翼,也有机翼后面的水平尾翼。

(四)起落装置

起落装置的功用是使飞机在地面或水面进行起飞、着陆、滑行和停放。着陆时还通过起落装置吸收撞击能量,改善着陆性能。

早期陆上飞机起落装置比较简单,只有三个起落架,而且在空中不能收起,飞行阻力大。现代的陆上飞机起落装置包含起落架和改善起落性能的装置两部分,且起落架在起飞后即可收起,以减少飞行阻力。改善起落性能的装置主要有起飞加速器、机轮刹车、减速伞等。

水上飞机的起落架由浮筒代替机轮。

(五)操纵系统(飞行控制系统)

飞机操纵系统是指从座舱中飞行员驾驶杆(盘)到水平尾翼、副翼、方向舵等操纵面,用来传递飞行员操纵指令,改变飞行状态的整个系统。早期的操纵系统是由拉杆、摇臂(或钢索)组成的纯机械操纵系统。现代飞机在操纵系统中采用了很多自动控制装置,因而,通常把它称为飞行控制系统。

(六)动力装置

飞机动力装置是用来产生拉力(螺旋桨飞机)或推力(喷气式飞机),使飞机前进的装置。采用推力矢量的动力装置,还可用来进行机动飞行。现代的军用飞机多数为喷气式飞机。

喷气式飞机的动力装置主要分为涡轮喷气发动机和涡轮风扇发动机两类。

三、飞机的操纵方式

千变万化的飞行动作都是在飞行员以杆、舵、油门为主的操纵下完成的。主要有俯仰操纵、横侧操纵和方向操纵。

(一)俯仰转动

俯仰转动是通过飞行员前推或后拉驾驶杆,从而使升降舵面上偏或下偏来实现的。如飞行员向后拉杆时,升降舵上偏,相对气流作用在升降舵面上,使整个水平尾翼产生一个向下的附加力,对飞机重心构成一个使机头上仰的操纵力矩,在这个力矩的作用下,飞机绕横轴做上仰运动

当飞行员向前推杆时,升降舵向下偏转,相对气流作用在升降面上,在水平尾翼上产生一个向上的附加力,对飞机重心构成了使机头下俯的操纵力矩,飞机便绕横轴做下俯运动。

(二)横侧转动

横侧转动是通过飞行员在左右压杆,使左右机翼上的副翼发生偏转来实现的。如飞行员向左压杆,左副翼上偏,右副翼下偏。相对气流作用在左右副翼上,使左机翼产生向下的附加力,右机翼产生向上的附加力,对飞机重心构成左滚力矩,飞机便绕纵轴向左滚转。相反,如果飞行员向右压杆,飞机右副翼上偏,左副翼下偏,对飞机重心构成右滚力矩,飞机便向右滚转(见图)

(三)方向偏转

方向偏转是通过飞行员左、右蹬舵,使垂直尾翼上的方向舵左、右偏转来实现的。如飞行员蹬左舵,方向舵左偏,相对气流作用在方向舵面上,使垂直尾翼上产生一个向右的侧力,对飞机重心构成了一个使机头左偏的方向操纵力矩,飞机向左发生偏转同样,飞行员蹬右舵,机头就会向右偏转。

当然,飞行员在做飞行动作时,不仅在于进行某种单一的操纵,而是几种操纵同时进行的。如做特技飞行中的急上升转弯(战斗转弯)的动作时,飞行员不但要加油门向后拉杆,增加仰角,还要压杆增大坡度,同时还要蹬舵消除内侧滑,使飞机绕三轴同时转动。可见,飞行远远不象我们看到的"自由翱翔"那么简单,飞机所呈现出的各种简单与复杂的飞行状态,都出自飞行员灵巧的双手和双脚。

四、飞行的基本状态和复杂的特技动作

(一)基本状态

1.平飞:是最基本的飞行动作,通常是指飞机在等高、等速的条件下做水平直线飞行。这时,飞机的升力(Y)与重力(G)平衡,拉力(P)与阻力(X)平衡,即:Y=G、P=X。当然,还有加速平飞和减速平飞,所不同的是:加速平飞时P>X,而减速平飞时P<X。

2.上升:飞机沿一条倾斜向上的轨迹所做的飞行(爬高)。上升轨迹与水平面的夹角称上升角。上升分等速和变速上升。

3.下滑:飞机沿向下的倾斜轨迹所做的飞行称下滑。下滑轨迹与水平面之间的夹角,叫下滑角。下滑分加速下滑(迅速下降高度)、减速下滑(着陆阶段)和等速下滑。

4.侧滑:飞机对称面与相对气流方向不一致的飞行称侧滑。飞行中,飞行员只蹬舵,不压杆,或只压杆不蹬舵,都会使飞机产生侧滑。相对气流与飞机对称面之间的夹角叫侧滑角。

这是几种最基本的飞行状态,飞行学员在最初的"起落航线"阶段就会遇到。

(二)起落航线飞行

所谓起落航线飞行,就是在机场上空周围按规定的高度、速度和预定的转弯点组成五边(或四边)航线进行起飞着陆的飞行。要求飞行员在有限的时间内,完成观察座舱内外的各种信息变化,并及时操纵以保持正确数据;目测判断和修正飞机的状态、飞行高度、速度及前后机距离;完成收放起落架和襟翼动作等。分起飞上升、航线建立和下滑目测着陆等阶段。

1.起飞:是指飞机从开始滑跑到离陆并上升到一定的高度(通常为25米)和达到一定速度的过程。正常起飞分三点滑跑、两点滑跑、离陆、小角度上升和上升5个阶段(图1-27)。高速飞机由于发动机功率大,离陆后可不经过小角度上升而直接进入上升阶段。

2.着陆:是指飞机从一定的高度下滑并降落于跑道,直到停止滑跑,脱离跑道(滑出跑道)的过程。通常分为下滑、拉开始、拉平、平飘、接地和着陆滑跑6个阶段。一般飞机的着陆速度比起飞离陆速度大,为了缩短着陆滑跑矩离,高速飞机落地时除了使用刹车减速装置外,还使用着陆减速伞,作用在于缩短滑跑距离。

(三)特技飞行

飞行员操纵飞机按一定的动作形式和轨迹做高度、速度、方向和状态不断变化的飞行叫特技飞行。它是歼击机飞行员的必修课目。是充分发挥飞机性能,利用各种飞行动作进行空中机动以有效地攻击敌方并避开敌方攻击的重要手段。

特技有简单特技、复杂特技和高级特技之分。简单特技主要动作有:盘旋、俯冲、横滚、跃升、急上升转弯等。复杂特技有:最大允许坡度盘旋(大坡度盘旋)、半滚倒转、斤斗、半斤斗翻转、斜斤斗等(图1-30)。高级特技有:上下横"8"字、竖"8"字、草花形斤斗、双上升转弯、上升横滚、跃升盘旋、翻转横滚、多次上升横滚和多次下滑横滚等。

(四)超机动能力

超机动能力是从1989年苏-27战斗机表演了"眼镜蛇"机动动作后开始出现的飞行新概念,这是一个全新的、非常规的机动动作。"眼镜蛇"机动简单的说是一个低速、大迎角机动,飞机能够在2.5秒之内使俯仰角变化90度到100度。而且在整套动作中飞机没有任何失控趋势的动作。"眼镜蛇"机动说明,苏-27已具有很好的上仰操纵能力,动、静态横侧稳定性和操纵性,以及良好的下俯控制能力。由于苏-27的良好飞行性能,使它成为公认的第三代超音速战斗机的优秀代表,与美国的F-16和F-15并驾齐驱。

继苏-27之后,苏霍伊飞机设计局又推出苏-37战斗机。苏-37是在苏-27M战斗机基础上发展的型号,其外形与苏-27很相似。该机不仅能够作"眼镜蛇"机动,而且还可以在"眼镜蛇"机动动作后接一个360度的滚转、尾冲,在垂直平面内作360度转向的圆形机动,高速盘旋时可以大角度攻击目标,甚至可以在大迎角情况下以接近零速的状态下飞行。因此,苏-37被称为当今超机动性或超高机动性战斗机。

苏-37为什么有这么好的机动特性,主要是因为它装备了一种功能独特的动力装置,即两台AL-37FU涡轮风扇发动机。这种发动机不但推重比大,可为战斗机提供强劲的飞行动力,而且采用了先进的转向喷口设计,使飞机具有推力矢量控制能力,可实现超常的高难度机动飞行。超机动能力是对战斗机机动性能提出的新的更高的要求,但是有些非常规机动的实用价值如何,目前还较大争议。

飞机为什么会飞起来

一、飞行原理

飞机在空气中运动时,是靠机翼产生升力使飞机离陆升空的。机翼升力是怎样产生的呢?这首先得从气流的基本原理谈起。在日常生活中,有风的时候,我们会感到有空气流过身体,特别凉爽;无风的时候,骑在自行车上也会有同样的体会,这就是相对气流的作用结果。滔滔江水,流经河道窄的地方时,水流速度就快;经过河道宽的地方时,水流变缓,流速较慢。空气也是一样,当它流过一根粗细不等的管子时,由于空气在管子里是连续不断地稳定流动,在空气密度不变的情况下,单位时间内从管道粗的一端流进多少,从细的一端就要流出多少。因此空气通过管道细的地方时,必须加速流动,才能保证流量相同。由此我们得出了流动空气的特性:流管细流速快;流管粗流速慢。这就是气流连续性原理。

实践证明,空气流动的速度变化后,还会引起压力变化。当流体稳定流过一个管道时,流速快的地方压力小。流速慢的地方压力大。

飞机在向前运动时,空气流到机翼前缘,分为上下两股,流过机翼上表现的流线,受到凸起的影响,使流线收敛变密,流管(把两条临近的流线看成管子的管壁)变细;而流过下表面的流线也受凸起的影响,但下表面的凸起程度明显小于上表面,所以,相对于上表面来说流线较疏松,流管较粗。由于机翼上表面流管变细,流速加快,压力较小,而下表面流管粗,流速慢,压力较大。这样在机翼上、下表面出现了压力差。这个作用在机翼各切面上的压力差的总和便是机翼的升力(见图)。其方向与相对气流方向垂直;其大小主要受飞行速度、迎角(翼弦与相对气流方向之间的夹角)、空气密度、机翼切面形状和机翼面积等因素的影响。当然,飞机的机身、水平尾翼等部位也能产生部分升力,但机翼升力是飞机升空的主要升力源。飞机之所以能起飞落地,主要是通过改变其升力的大小而实现的。这就是飞机能离陆升空并在空中飞行的奥秘。

二、飞机的主要组成部队及其功用

自从世界上出现飞机以来,飞机的结构形式虽然在不断改进,飞机类型不断增多,但到目前为止,除了极少数特殊形式的飞机之外,大多数飞机都是由下面六个主要部分组成,即:机翼、机身、尾翼、起落装置、操纵系统和动力装置。它们各有其独特的功用。

(一)机身

机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。

(二)机翼

机翼是飞机上用来产生升力的主要部件,一般分为左右两个翼面。

机翼通常有平直翼、后掠翼、三角翼等。机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。襟翼平时处于收上位置,起飞着陆时放下。

飞机的机翼的变化

在飞机诞生之初,机翼的形状千奇百怪,有的像鸟的翅膀,有的像蝙蝠的黑翼,有的像昆虫的翅膀;有的是单机翼,有的是双机翼。到第二次世界大战时,虽然绝大多数飞机"统一)到单机翼上来,但单机翼的位置又有上单机翼、中单机翼和下单机翼之分,其形状有平直机翼、后掠机翼、三角机翼、梯形机翼、变后掠角机翼和前掠角机翼之别。

(三)尾翼

尾翼分垂直尾翼和水平尾翼两部分。

1.垂直尾翼

垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。

通常垂直尾翼后缘设有方向舵。飞行员利用方向舵进行方向操纵。当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。同样,蹬左舵时,方向舵左偏,机头左偏。某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。

2.水平尾翼

水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生附加的负升力(向下的升力),此力对飞机重心产生一个使机头上仰的力矩,从而使飞机抬头。同样飞行员推杆时升降舵下偏,飞机低头。

超音速飞机采用全动平尾,即将水平安定面与升降舵合为一体。飞行员推拉杆时整个水平尾翼都随之偏转。飞行员用全动平尾来进行俯仰操纵。其操纵原理与升降舵相同。

某些高速飞机为了提高滚转性能,在左、右压杆时,左、右平尾反向偏转,以产生附加的滚转力矩,这种平尾称为差动平尾。

有些飞机的水平尾翼放在机翼前边,这种飞机叫鸭式飞机。这时放在机翼前面的水平尾翼称为鸭翼或前翼。也有一部分飞机没有水平尾翼,这种飞机称为无尾飞机。

现在有些飞机还采用了三翼面的布局方法,也就是说既有机翼前面的前翼,也有机翼后面的水平尾翼。

(四)起落装置

起落装置的功用是使飞机在地面或水面进行起飞、着陆、滑行和停放。着陆时还通过起落装置吸收撞击能量,改善着陆性能。

早期陆上飞机起落装置比较简单,只有三个起落架,而且在空中不能收起,飞行阻力大。现代的陆上飞机起落装置包含起落架和改善起落性能的装置两部分,且起落架在起飞后即可收起,以减少飞行阻力。改善起落性能的装置主要有起飞加速器、机轮刹车、减速伞等。

水上飞机的起落架由浮筒代替机轮。

(五)操纵系统(飞行控制系统)

飞机操纵系统是指从座舱中飞行员驾驶杆(盘)到水平尾翼、副翼、方向舵等操纵面,用来传递飞行员操纵指令,改变飞行状态的整个系统。早期的操纵系统是由拉杆、摇臂(或钢索)组成的纯机械操纵系统。现代飞机在操纵系统中采用了很多自动控制装置,因而,通常把它称为飞行控制系统。

(六)动力装置

飞机动力装置是用来产生拉力(螺旋桨飞机)或推力(喷气式飞机),使飞机前进的装置。采用推力矢量的动力装置,还可用来进行机动飞行。现代的军用飞机多数为喷气式飞机。

喷气式飞机的动力装置主要分为涡轮喷气发动机和涡轮风扇发动机两类。

三、飞机的操纵方式

千变万化的飞行动作都是在飞行员以杆、舵、油门为主的操纵下完成的。主要有俯仰操纵、横侧操纵和方向操纵。

(一)俯仰转动

俯仰转动是通过飞行员前推或后拉驾驶杆,从而使升降舵面上偏或下偏来实现的。如飞行员向后拉杆时,升降舵上偏,相对气流作用在升降舵面上,使整个水平尾翼产生一个向下的附加力,对飞机重心构成一个使机头上仰的操纵力矩,在这个力矩的作用下,飞机绕横轴做上仰运动

当飞行员向前推杆时,升降舵向下偏转,相对气流作用在升降面上,在水平尾翼上产生一个向上的附加力,对飞机重心构成了使机头下俯的操纵力矩,飞机便绕横轴做下俯运动。

(二)横侧转动

横侧转动是通过飞行员在左右压杆,使左右机翼上的副翼发生偏转来实现的。如飞行员向左压杆,左副翼上偏,右副翼下偏。相对气流作用在左右副翼上,使左机翼产生向下的附加力,右机翼产生向上的附加力,对飞机重心构成左滚力矩,飞机便绕纵轴向左滚转。相反,如果飞行员向右压杆,飞机右副翼上偏,左副翼下偏,对飞机重心构成右滚力矩,飞机便向右滚转(见图)

(三)方向偏转

方向偏转是通过飞行员左、右蹬舵,使垂直尾翼上的方向舵左、右偏转来实现的。如飞行员蹬左舵,方向舵左偏,相对气流作用在方向舵面上,使垂直尾翼上产生一个向右的侧力,对飞机重心构成了一个使机头左偏的方向操纵力矩,飞机向左发生偏转同样,飞行员蹬右舵,机头就会向右偏转。

当然,飞行员在做飞行动作时,不仅在于进行某种单一的操纵,而是几种操纵同时进行的。如做特技飞行中的急上升转弯(战斗转弯)的动作时,飞行员不但要加油门向后拉杆,增加仰角,还要压杆增大坡度,同时还要蹬舵消除内侧滑,使飞机绕三轴同时转动。可见,飞行远远不象我们看到的"自由翱翔"那么简单,飞机所呈现出的各种简单与复杂的飞行状态,都出自飞行员灵巧的双手和双脚。

四、飞行的基本状态和复杂的特技动作

(一)基本状态

1.平飞:是最基本的飞行动作,通常是指飞机在等高、等速的条件下做水平直线飞行。这时,飞机的升力(Y)与重力(G)平衡,拉力(P)与阻力(X)平衡,即:Y=G、P=X。当然,还有加速平飞和减速平飞,所不同的是:加速平飞时P>X,而减速平飞时P<X。

2.上升:飞机沿一条倾斜向上的轨迹所做的飞行(爬高)。上升轨迹与水平面的夹角称上升角。上升分等速和变速上升。

3.下滑:飞机沿向下的倾斜轨迹所做的飞行称下滑。下滑轨迹与水平面之间的夹角,叫下滑角。下滑分加速下滑(迅速下降高度)、减速下滑(着陆阶段)和等速下滑。

4.侧滑:飞机对称面与相对气流方向不一致的飞行称侧滑。飞行中,飞行员只蹬舵,不压杆,或只压杆不蹬舵,都会使飞机产生侧滑。相对气流与飞机对称面之间的夹角叫侧滑角。

这是几种最基本的飞行状态,飞行学员在最初的"起落航线"阶段就会遇到。

(二)起落航线飞行

所谓起落航线飞行,就是在机场上空周围按规定的高度、速度和预定的转弯点组成五边(或四边)航线进行起飞着陆的飞行。要求飞行员在有限的时间内,完成观察座舱内外的各种信息变化,并及时操纵以保持正确数据;目测判断和修正飞机的状态、飞行高度、速度及前后机距离;完成收放起落架和襟翼动作等。分起飞上升、航线建立和下滑目测着陆等阶段。

1.起飞:是指飞机从开始滑跑到离陆并上升到一定的高度(通常为25米)和达到一定速度的过程。正常起飞分三点滑跑、两点滑跑、离陆、小角度上升和上升5个阶段(图1-27)。高速飞机由于发动机功率大,离陆后可不经过小角度上升而直接进入上升阶段。

2.着陆:是指飞机从一定的高度下滑并降落于跑道,直到停止滑跑,脱离跑道(滑出跑道)的过程。通常分为下滑、拉开始、拉平、平飘、接地和着陆滑跑6个阶段。一般飞机的着陆速度比起飞离陆速度大,为了缩短着陆滑跑矩离,高速飞机落地时除了使用刹车减速装置外,还使用着陆减速伞,作用在于缩短滑跑距离。

(三)特技飞行

飞行员操纵飞机按一定的动作形式和轨迹做高度、速度、方向和状态不断变化的飞行叫特技飞行。它是歼击机飞行员的必修课目。是充分发挥飞机性能,利用各种飞行动作进行空中机动以有效地攻击敌方并避开敌方攻击的重要手段。

特技有简单特技、复杂特技和高级特技之分。简单特技主要动作有:盘旋、俯冲、横滚、跃升、急上升转弯等。复杂特技有:最大允许坡度盘旋(大坡度盘旋)、半滚倒转、斤斗、半斤斗翻转、斜斤斗等(图1-30)。高级特技有:上下横"8"字、竖"8"字、草花形斤斗、双上升转弯、上升横滚、跃升盘旋、翻转横滚、多次上升横滚和多次下滑横滚等。

(四)超机动能力

超机动能力是从1989年苏-27战斗机表演了"眼镜蛇"机动动作后开始出现的飞行新概念,这是一个全新的、非常规的机动动作。"眼镜蛇"机动简单的说是一个低速、大迎角机动,飞机能够在2.5秒之内使俯仰角变化90度到100度。而且在整套动作中飞机没有任何失控趋势的动作。"眼镜蛇"机动说明,苏-27已具有很好的上仰操纵能力,动、静态横侧稳定性和操纵性,以及良好的下俯控制能力。由于苏-27的良好飞行性能,使它成为公认的第三代超音速战斗机的优秀代表,与美国的F-16和F-15并驾齐驱。

继苏-27之后,苏霍伊飞机设计局又推出苏-37战斗机。苏-37是在苏-27M战斗机基础上发展的型号,其外形与苏-27很相似。该机不仅能够作"眼镜蛇"机动,而且还可以在"眼镜蛇"机动动作后接一个360度的滚转、尾冲,在垂直平面内作360度转向的圆形机动,高速盘旋时可以大角度攻击目标,甚至可以在大迎角情况下以接近零速的状态下飞行。因此,苏-37被称为当今超机动性或超高机动性战斗机。

飞行原理简介(三)

这部分我们要了解飞机最简单的运动形式:平飞、上升和下降。

平飞、上升和下降指的是飞机既不带倾斜也不带侧滑的等速直线飞行。这也是飞机最基本的飞行状态。飞机平飞、上升和下降性能是飞机最基本的飞行性能,如:平飞最大速度、平飞最小速度、最大上升角、最大上升率,升限、最小下降角、最大下降距离等,这些都是飞行员首先要学习和掌握的。

一. 平飞

飞机作等速直线水平的飞行,叫平飞。 平飞中作用于飞机的外力有升力、重力、拉力(或推力)和阻力。平飞时,飞机无转动,各力对重心的力矩相互平衡,且上述各力均通过飞机重心。为保持平飞,需要有足够的升力以平衡飞机的重量,为了产生这一升力所需的飞行速度,叫平飞所需速度影响平飞所需速度的因素:

飞机重量 在其它因素都不变的条件下,飞机重量越重,为保持平飞所需的升力 就越大,故平飞所需速度也越大。相反,飞机重量越轻,平飞所需速度就越小。

机翼面积 机翼面积大,升力也大。为了获得同样大的升力以平衡飞机重量,所需平飞速度就小。反之,机翼面积小,平飞所需速度就大。

空气密度空气密度小,升力也小,为了获得同样大的升力以平衡飞机重量,平飞所需速度就增大。反之,空气密度大,平飞所需速度就减小,空气密度的大小是随飞行高度以及该高度的气温气压而变化的,飞行高度升高,或在同一高度上,气温升高或气压降低,空气密度都会减小。反之增大。

升力系数 升力系数大,平飞所需速度就小。因为,升力系数大,升力大,只需较小的速度就能获得平衡飞机重量的升力。反之,升力系数小,平飞所需速度就大。

而升力系数的大小又决定于飞机迎角的大小和增升装置的使用情况。 迎角不同,开力系数不同,平飞所需速度也就不同。在小于临界迎角的范围内,用大迎角平飞,升力系数大,平飞所需速度就小,用小迎角平飞,升力系数小,平飞所需速度就大,即是 说,平飞中每一个迎角均有一个与之对应的平飞所需速度。

增升装置的使用情况不同,升力系数大小也不同,平飞所需速度也将下一样。(比 如放襟翼起飞,由于升力系数大,为平衡飞机重量所需的速度就小,即离地速度小,起飞滑跑距离就短)。

1. 最大平飞速度,在一定的高度和重量下,发动机加满油门时,飞机所能达到的稳定平飞速度,就是飞机在该高度上的最大平飞速度。 平飞最大速度是理论上飞机平飞所能达到的最大速度,而并不是飞机实际的最大使用速度,由于飞机强度等限制,最大使用速度比平飞最大速度可能要小。比如三叉戟飞机,在海平面,标准大气,全收状态下,平飞最大速度为480海里/小时,而最大使用速度则规定为365海里/小时。

2. 平飞最小速度,是飞机作等速平飞所能保持的最小速度。如有足够的可用拉力或可用功率,那么平飞最小速度的大小受最大升力系数的限制。因为临界迎角的升力系数最大, 所以与临界迎角相对应的平飞速度(失速速度),就是平飞最小速度。 对飞机的要求来说,平飞最小速度越小 越好,因平飞最小速度越小,飞机就可用更 小的速度接地,以改善飞机的着陆性能。 临界迎角对应的平飞速度,是平飞的最小理论速度。实际上当飞机接近临界迎角时,由于机翼上气流严重分离,飞机出现强烈抖动,飞机不仅易失速而且安定性、操纵性都差。所以实际上要以该速度平飞是不可能的。为保证安全,对飞行迎角的使用应留有一定的余量,不允许在临界迎角状态飞行。

3. 平飞有利速度就是以有利迎角保持平飞的速度。以有利速度平飞,升阻比最大平飞阻力最小,航程较远。

4. 经济速度就是用最小所需功率作水平飞行时的速度。用经济速度平飞所需功率最小,即所用发动机的功率最小,比较省油,航时较长。与经济速度相对应的迎角,叫经济迎角。

在平飞中改变速度的基本操纵方法是:要增大平飞速度,必须加大油门,并随着 速度的增大而前推驾驶杆;同理,要减小平飞速度则必须收个油门,并随着速度的减小 而后拉驾驶杆。也就是说,从一个平飞状态改变到另一个乎飞状态,必须同时操纵油门 和驾驶杆。此外,对螺旋桨飞机正必顶要修正因加减油门而引起的螺旋桨副作用的影响。 但是必须指出,上述改变平飞速度的操纵规律只有在大于经济速度的范围内才适合。

二. 上升

飞机沿向上倾斜的轨迹所作的等速直线飞行就叫上升。上升是飞机取得高度的基本方法。上升中作用于飞机的外力和平飞相同,有升力、重力、拉力(或推力)和阻力。
飞机的上升性能主要包括最大上升角、最大上升率、上升时间和上升限度。

1.上升角和上升梯度

上升角是飞机上升轨迹与水平线之间的夹角。上升角越大,说明经过同样的水平距离后,上升的高度越高。上升高度与水平距离的比值,就是上升梯度。飞机的剩余拉力(或剩余推力)越大,或飞机重量越轻,则上升角和上升梯度越大。

2. 上升率和最快上升速度

在上升中,飞机每秒钟所上升的高度,叫上升率,也叫上升垂直速度,上升率越大,表明飞机上升到一定高度所需的时间越短,飞机就能迅速取得高 度。所以说,飞机的最大上升率是飞机重要的飞行性能之一。 剩余功率越大,或飞机重量越轻功率越大。 因为飞机上升的过程,实际就是将剩余功率变成势能的过程。在飞机重量不变的情况下,剩余功率越大,飞机在单位时间内增加的势能就越多,上升率也就越大。在剩余功率一定的情况下,飞机重量越轻,在单位时间内上升的高度越高、上升率也就越大。 在重量一定的情况下升率的大小主要决定于剩余功率的大小,而剩余功率的大小又决定于油门位置和上升速度。在油门位置一定的情况下,用不同速度上升,由于剩余功率大小不同,上升率大小也就不同。对低速螺旋桨飞机,加满油门,在有利速度附近,剩余功率最大,所以用近似有利速度的速度上升,可以得到最大的上升率。

3. 上升时间和上升限度

上升率的变化决定于剩余功率的变化。所以,上升率随飞行高度的变化,也就决定于剩余功率随飞行高度的变化。 就可以确定出飞机在各个飞行高度上的最大上升率以及最快上升速度。在额定高度以上,随着高度的升高,发动机发出的功率减小,可用功率减小,剩余功率随之减小。所以,最大上升率随着高度的升高一直减小。 既然最大上升率随高度的增加要一直减小,那么上升到一定高度,上升率势必要减 小到零。这时飞机不可能再继续上升。上升率等于零的高度叫做理论上 升限度,简称理论升限。

飞机上升到预定高度所需的最短时间,叫上升时间。

飞机由平飞转入上升的基本操纵方法是:加大油门到预定位置,同时柔 和后拉驾驶杆,使飞机逐渐转入上升,及至接近预定上升角(上升率)时,即前推驾驶 杆,以便使飞机稳定在预定的上升角。必要时,调整油门.以保持预定的上升速度。对螺旋桨飞机,还应注意修正螺旋桨副作用的影响。 飞机由上升转入平飞,飞行员就应前推驾驶杆,减小迎角,以减小升力。只有升力小于重力第一分力,飞机产生向下的向心力之后,飞机运动轨迹才会向下弯曲,才可能转入平飞。

飞机由上升转入平飞的基本操纵方法是:柔和地前推驾驶 杆减小升力,同时收小油门,使飞机逐渐转入平飞,待上升角接近零时,即后拉驾驶盘保持平飞。必要时调整油门,以保持等速平飞,对螺旋桨飞机,还应注意修正螺旋桨副作用的影响。

三. 下降

飞机沿向下倾斜的轨迹所作的等速直线飞行就叫下降。下降是飞机降低高度的基本方法。下降中作用于飞机的外力和平飞相同,有升力、重力、拉力(或推力)和阻力。飞机的下降根据需要可用正拉力、零拉力或负拉力进行。拉力近似于零(闭油门)的下降叫下滑。

飞机的下降性能主要包括最小下降角、最小下降率和最大下降距离。

1. 下降角和下降率

下降轨迹与水平线之间的夹角叫下降角。飞机每秒钟所降低的高度叫下降率。下降率越大,飞机降低高度越快,下降到一定高度的时间就短。

2. 下降距离

飞机下降一定高度所通过的水平 距离,叫下降距离。下降距离的长短,取决于下降高度和下降角。下降高度越高,下降角越小,下降距离就越长。以有利迎角下降,因升阻比最大,下降角最小,故 下降距离最长。能获得最大下降距离的下降速度,叫做最大下降距离下降速度。对零拉 力下滑时,最大下滑距离速度就等于有利速度。 凡是使升阻比减小,下降角增大的因素都将使下降距离缩短。如在放起落架、襟 翼,飞机结冰等情况下,升阻比减小,下降角增大,下降距离缩短,飞机用负拉力下降 时,下降角增大,下降距离缩短。 飞行中常可根据滑翔比的大小来估计下降距离的长短。滑翔比是下降距离与下降高度之比。滑翔比就是飞机每降低一米高度所前进的距离。在高度一定的情况下,滑翔比越大,下降距离就越长。在无风和零拉力的情况下,滑翔比就等于飞机的升阻比。

下降的操纵原理

操纵驾驶杆改变下降角。下降速度、下降率以及下降距离在稳定的下降中,一个迎角对应一个下降速度。移动驾驶杆改变迎角,就可相应地改变下降速度、下降角、下降率以及下降距离。在下降第一范围内,后位驾驶杆,迎角 增大,升力系数增大,下降速度减小,下降角减小,下降率减小,下降距离增长,反 之,前推驾驶盘,下降速度增大,下降角、下降率增大,下降距离缩短,用有利迎角下 降,下降角最个,下降距离最远。用经济迎角下降,下降率最小。 下降中,主要是操纵驾驶盘和油门,保持好下降速度和下降角。只要油门在规定位 置,操纵驾驶杆保持好规定的下降速度,就可以获得预定的下降角。

加、减油门改变下降角、下降距离。下降中,不动驾驶盘,即迎角保持下变,加油门可使下降角减小,下降速度稍增 大,下降距离增长,减油门可使下降角增大, 下降速度稍减小,下降距离缩短。 加油门,拉力增大,下降速度增大,升、阻力增大。

飞机由平飞转入下降的基本操纵方法一般是:柔和前推驾驶盘,以减小迎 角,使飞机逐渐转入下降,同时收小油门,减小拉力。待飞机接近预定的下降角(下 降率)时,应及时后拉驾驶盘,保持好预定的下降角下降。

飞机由下滑转平飞的基本操纵方法是:加大油门至平飞位置,同时柔和地后拉驾驶盘以减小下降角,待飞机接近平飞状态时,应向前回盘,保持平飞。

飞机的翅膀的上面是凸起的,但下面是平的,这样在飞行的过程中,当气流流过机翼的时候,就会使得在机翼的 上下面的空气流速不同,由伯努力方程可知,这样就产生了对飞机的向上的作用力,飞机就可以停在空中而不落下来。直升机原理和固定翼飞机完全不同,他是靠螺旋桨转动产生的向下的气流来支持飞机的